

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

SEMESTER – I

S. No.	Course	Course Name	Catego	Hours per week			Credit
	codes		ry	L	Т	Р	S
1.	21D11102	Advanced Thermodynamics	PC	3	0	0	3
2.	21D11201	Advanced Heat & Mass Transfer	PC	3	0	0	3
3.	21D88101a 21D88101b 21D88101c	Program Elective Course - I Advanced Turbo Machines Advanced Refrigeration & Air- Conditioning Design of Thermal Systems	PE	3	0	0	3
	21D11104a 21D88102a 21D88102b	Program Elective Course – II Fuels & Combustion Technology FEA in Thermal Engineering Design of Heat Exchangers	PE	3	0	0	3
5.	21D88103	Thermal Engineering Laboratory	PC	0	0	4	2
6.	21D11205	Advanced Heat & Mass Transfer Laboratory	PC	0	0	4	2
7.	21DRM101	Research Methodology and IPR	MC	2	0	0	2
8.	21DAC101a 21DAC101b 21DAC101c	Audit Course – I English for Research paper writing Disaster Management Sanskrit for Technical Knowledge	AC	2	0	0	0
	•	Total	-			-	18

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI SEMESTER – II

S.No.	Course	Course Name	Categor	Hou	Hours per week		
	codes		У	L	Т	Р	ts
1.	21D88201	Advanced IC Engines	PC	3	0	0	3
2.	21D11204a	Computational Fluid Dynamics	PC	3	0	0	3
3.	21D88202a 21D88202b 21D88202c	Program Elective Course – III Instrumentation for Thermal Engineering Cryogenic Engineering Thermal & Nuclear Power Plants	PE	3	0	0	3
4.	21D88203a 21D88203b 21D88203c	Program Elective Course – IV Design of Thermal Systems Environmental Engineering & Pollution Control Alternative Energy Sources	PE	3	0	0	3
5.	21D88204	Simulation Laboratory	PC	0	0	4	2
6.	21D88205	Computational Fluid Dynamics Laboratory	PC	0	0	4	2
7.	21D88206	Technical seminar	PR	0	0	4	2
8.	21DAC201a 21DAC201b 21DAC201c	Audit Course – II Pedagogy Studies Stress Management for Yoga Personality Development through Life Enlightenment Skills	AC	2	0	0	0
		Total					18

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

SEMSTER - III

S.No.	Course	Course Name	Category	Hours per week			Cred
	codes			L	Т	Р	its
1.		Program Elective Course – V	PE	3	0	0	3
	21D88301a	Optimization Techniques & Its Applications					
	21D88301b	Jet Propulsion & Rocketry					
	21D88301c	Aircraft and Space Propulsion					
2.		Open Elective	OE	3	0	0	3
	21DOE301c	Business Analytics					
	21DOE301g	Internet Of Things					
	21DOE301h	Mechatronics					
3.	21D88302	Dissertation Phase – I	PR	0	0	20	10
4.	21D88303	Co-curricular Activities					2
	21D88304	Total					18

SEMESTER - IV

S.No.	Course codes	Course Name	Category	Hours per week			Credits
				L	Т	Р	
1.	21D88401	Dissertation Phase – II	PR	0	0	32	16
		Total					16

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED THERMODYNAMICS	L	Т	Р	С
21D11102		3	0	0	3
	Semester]		
	2				
Course Object	ives: Student will be able to				
Solve theory	etical and applied thermodynamics problems that are directly a	pplica	ble to		
situations fa	ced in research and industry.				
Significant	emphasis is placed on the integration of recent thermodynamics-rela	ted re	search		
into the trac	litional resources in order to foster critical analysis of current work as	s it rel	ates to		
fundamenta	l principles.				
Course Outcon	nes (CO): Student will be able to				
Describe an	d calculate thermodynamic properties of single-phase and multi-phase	se syst	ems		
• Apply the la	two of statistical and classical thermodynamics to chemically reactive	e syste	eins, ki	netics	, and
Relate cour	se principles to solve problems regarding gas turbines, combustion	refrig	eration	and	solar
energy	se principies to solve problems regarding gas tarbines, combustion,	Tenng	cration	, and	solai
Communica	te engineering knowledge of thermodynamics through written and ve	erbal r	neans.		
UNIT – I		Lect	ure Hrs	s:9	
AVAILABILI	TY ANALYSIS AND THERMODYNAMIC PROPERTY				
RELATIONS					
Reversible world	c - availability - irreversibility and second - law efficiency for a clos	ed sys	tem ar	nd stea	ıdy –
state control vo	lume. Availability analysis of simple cycles. Thermodynamic potent	ials. N	laxwel	l relat	ions.
Generalized rel	ations for changes in entropy - internal energy and enthalpy - gener	ralized	l relati	ons fo	r Cp
and CV Clausiu	s Clay person equation, Joule – Thomson coefficient. Bridgeman tal	oles fo	r thern	nodyn	amic
relations.		-			
UNIT – II		Lect	ure Hrs	s:9	
REAL GAS BI	CHAVIOUR AND MULTI – COMPONENT SYSTEMS		Ctatas	. T L	a of
Different equal	tons of state – fugacity – compressionity - principle of correspondent for anthony and antropy departure fugacity coefficient I as	naing	States	$\frac{1}{1}$	se of
parameter table	rs for children by and children ucparture - rugacity coefficient, Lee - r	vositic	genera n Par	nzeu tial n	nolar
parameter table properties Real	gas mixtures - Ideal solution of real gases and liquid - activity - equ	ilibriu	11. 1 ai 11. in 1	nulti r	hase
systems - Gibbs	phase rule for non – reactive components	mom		nunn þ	mase
UNIT – III		Lect	ure Hrs	3:9	
CHEMICALT	HERMODYNAMICSANDEOUILIBRIUM	2000			
Thermo chem	histry-Firstlawanalysisofreactingsystems-Adiabaticflametemperature-	-entro	py cl	hange	of
reacting syster	ns- Second law analysis of reacting systems- Criterion for	react	ion ec	quilibr	ium.
Equilibriumcon	stantforgaseousmixtures-evaluationofequilibriumcomposition.			•	
		Last		0	
$\frac{\text{UNII} - \text{IV}}{\text{A polyatic of your}}$	ann namer & Vanaun compression refrigeration avalage	Lect	ure Hrs	\$:9	
Analysis of var Ranking cycle	with superheat reheat and refrigeration Every analysis Super	ritica	and u	ltra ci	unor
critical Rankine	α cycle	linca.		nu a-si	uper-
Vapour compre	ession refrigeration Systems Analysis of vapour refrigeration systems	tems	Comm	only	used
refrigerants.	ssion reingeration bystems, rularysts or vapour reingeration sys	, cillib,	Comm	lonity	usea
		-			
UNIT – V		Lect	ure Hrs	s:	
Analysis of Ga	s power cycles:				
IC Engines : Ai	r standard Otto, Diesel and Dual cycle				
Gas turbines: A	ir standard Brayton cycle. Effect of reheat inter cooling and regen	eration	L. Cor	nhinea	1 oas
and vapour pow	er cycles.		., .01		* 5 ^{us}

Textbooks:

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 1. Kenneth Wark Jt. m, Advanced Thermodynamics for Engineers, McGrew Hill Inc., 1995.
- 2. Bejan, A., Advanced Engineering Thermodynamics, John Wiley and Cons, 1988.
- 3. Holman, J.P., Thermodynamics, Fourth Edition, McGraw–HillInc., 1988.
- 4. Fundamentals of Engineering Thermodynamics by V.Babu

Reference Books:

- 1. Smith, J.M. and VanNess., H.C., Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw–HillInc., 1987.
- 2. Sonntag, R.E., and Van Wylen, G, Introduction to Thermodynamics, Classical and StatisticalThemodynamics, ThirdEdition, JohnWileyandSons, 1991.
- 3. Sears, F.W. and Salinger G.I., Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Third Edition, Narosa Publishing House, New Delhi, 1993.
- DeHotf, R.T., Thermodynamics in Materials Science, McGraw Hill Inc., 1993. Rao, Y.V.C.Postulational and Statistical Thermodynamics, Allied Publisher Limited, NewDelhi, 1999

Online Learning Resources:

1. https://nptel.ac.in/courses/103/103/103103162/

2. https://onlinecourses.nptel.ac.in/noc20_ch03/preview

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED HEAT AND MASS TRANSFER	L	Т	P	C
21D11201		3	0	0	3
	Semester			I	
Course Objectiv	es: Student will be able to				
		1.1 C			
Develop turbulone	the ability to use the heat transfer concepts for various applications.	like fi	inned	l syster	ms,
• analyze f	te nows, night speed nows. he thermal analysis and sizing of heat exchangers and to learn the h	eat tre	ancte	r	
coefficier	t for compact heat exchanges.		111510	1	
Achieve	an understanding of the basic concepts of phase change processes a	nd ma	iss tra	ansfer.	
Course Outcome	es (CO): Student will be able to				
• Appl	y the law of thermodynamics to engines.				
UNIT – I		Lect	ure F	Irs:	
CONDUCTION	AND RADIATION HEAT TRANSFER				
One dimensiona	l energy equations and boundary condition - three-dimension	nal he	eat a	conduc	tion
equations - exten	ded surface heat transfer - conduction with moving boundaries - ra	adiatio	on in	gases	and
vapour. Gas radia	ition and radiation heat transfer in enclosures containing absorbing	and er	mittir	ng mec	l1a —
interaction of rad	lation with conduction and convection.				
UNIT – II		Lect	ure F	Irs:	
TURBULENT F	ORCED CONVECTIVE HEAT TRANSFER				
Momentum and	energy equations - turbulent boundary layer heat transfer - mixing	ing le	ngth	conce	ept -
turbulence model	$I - k \in model$ - analogy between heat and momentum transfer –	Rey	nolds	, Colb	ourn,
Prandtl turbulent	flow in a tube - high speed flows.				
UNIT – III		Lect	ure F	Irs:	
PHASE CHANG	E HEAT TRANSFER AND HEAT EXCHANGER				
Condensation wit	h shears edge on bank of tubes - boiling - pool and flow boiling -	heat (excha	anger -	-E –
NTU approach ar	nd design procedure - compact heat exchangers.				
UNIT – IV		Lect	ure F	Irs:	
NUMERICAL N	METHODS IN HEAT TRANSFER				
Finite difference	formulation of steady and transient heat conduction problems – disc	retize	ation	scherr	nec
explicit - Crank	Nicolson and fully implicit schemes - control volume form	mlatic	on st	eady	one-
dimensional conv	vection and diffusion problems - calculation of the flow field $-$ SIM	PLER	Alg	orithm	
	1		0		
UNIT – V		Lect	ure F	Irs:	
MASS TRANSF	ER AND ENGINE HEAT TRANSFER CORRELATION				
Mass transfer - va	aporization of droplets - combined heat and mass transfers - heat tr	ansfer	r corr	relation	ns in
various applicatio	ons like I.C. engines - compressors and turbines.	unorer	com	ciutioi	15 111
· ·····					
Textbooks:					
1. YunusA.Cenga	l, Heat and Mass Transfer – A practical Approach, 3rd edition, Tata	a McC	Graw	- Hill,	,
2007.					
2. Holman.J.P, H	eat Transfer, Tata Mc Graw Hill, 2002.				
Reference Books	s:				
1. Ozisik. M.N., I	Heat Transfer – A Basic Approach, McGraw-Hill Co., 1985				
2. Incropera F.P.	and DeWitt. D.P., Fundamentals of Heat & Mass Transfer, John Wi	ley &	: Son	s,	

2002.

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 3. Nag.P.K, Heat Transfer, Tata McGraw-Hill, 2002
- 4. Ghoshdastidar. P.S., Heat Transfer, Oxford University Press, 2004
- 5. Yadav, R., Heat and Mass Transfer, Central Publishing House, 1995.

Online Learning Resources:

1. https://nptel.ac.in/courses/112/101/112101097/

Course Code	ADVANCED TURBO MACHINES	L	Т	Р	С
21D88101a	Program Elective Course - I	3	0	0	3
	Semester	Ι		•	
Course Object	ives: Student will be able to				
Develo	p the ability to use the turbo concepts for various applicants like	e steam r	nozzles,	steam t	urbines
Achiev	e an understanding of the basic concepts of centrifugal, axial, ro	otary cor	npressor	s and a	xial
flow ga	s turbines.				
Course Outcon	nes (CO): Student will be able to				
On such maching	cessful completion of this course the student will be able to und es and its applications.	erstand t	he conc	ept of ti	ırbo
UNIT – I		Lecture	Hrs.9		
Fundamentals	of Turbo machines: Classification Applications Thermodyna	mic anal	vsis [.] Ise	ntropic	flow
Energy transfer	Efficiencies: static and Stagnation conditions: continuity equal	tion: Eul	er's floy	v throu	σh
variable cross s	ectional area: unsteady flow in turbo machines.				5
UNIT – II		Lecture	e Hrs:9		
Steam Nozzles	Effect of back – pressure on the analysis: Design of nozzles.				
Steam Turbin	s of C & C – D nozzles: Impulse Turbines: work done and velo	citv tria	ngles: E	fficienc	cies:
Constant React	on Blading; Design of blade passages, angles and height;	,	8		
Secondaryflow	leakagelosses; Thermodynamic analysis of steam turbines.				
UNIT – III		Lecture	e Hrs:9		
Gas Dynamics	: Fundamentals thermodynamic concepts; Isentropic conditions	; Mach 1	numbera	ndArea	.—
Velocityrelation	n;Dynamicpressure;normalshockrelationsforperfectgas;supersor	ic flow,	oblique	shock	waves;
normal shock re	ecovery ; detached shocks ; Aerofoiltheory.		•		
Centrifugal Co	ompressor: Types; Velocity triangles and efficiencies; Blade pa	ssage de	esign; Di	iffuser a	and
pressure recove	ry; slip factor; stanitz and stodolas formulae; Effect of inlet mad	ch numb	er; Prew	virl;	
performance					
UNIT – IV		Lecture	e Hrs:9		
Axial Flow Co	mpressors: Flow analysis, work and velocity triangles; Efficier	ncies; Th	ermody	namic	
analysis; stage	pressure rise ; Degree of reaction ; stage loading; general design	, effect o	of veloci	ity incic	lence;
performance.					
Cascade Analy	sis: Geometry and Terminology; Blade forces, Efficiency; loss	es; free a	and force	ed vorte	X
blades.					
UNIT – V		Lecture	e Hrs:8		
Axial Flow Ga	s Turbines: Work done; velocity triangles and efficiencies; the	rmodyna	umic		
flowanalysis;de	greeofreaction;Zweifelsrelation;Designcascadeanalysis-Soderb	erg-Hav	wthrone	 ainley 	y-
correlations; se	condary flow; Free-vortex blades; Blade angles for variable deg	ree of re	eaction;	Actuato	r
disctheory;					
Stresses in blad	es; Blade assembling; materials and cooling of blades; performa	ance; Ma	atching of	of comp	oressor
and turbine; off	-design performance.				
Textbooks:					
Fundamentals of	f Turbo machines– Shephard				
Practise on Tur	bo machines –G. Gopala krishnan & D. Prithviraj, SciTech Pub	lishers, (Chennai		
Elements of Ga	s Dynamics–Yahya				
Reference Boo	ks:				
Turbines, Comp	pressors & Fans S. M. Yahya Tata McGraw Hill Co. Ltd 2nd ed	ition, 20	02		
Principals of Tu	rbo machines D. G. Shepherd The Macmillan Company 1964				
Fluid Mechanic	s & Thermodynamics of Turbo machines S. L. Dixon Elsevier	2005			
Online Learni	ng Resources:				
https://app.knov	vel.com/web/toc.v/cid:kpPTE00022/viewerType:toc//root_slug:	principle	es-		
turbomachinery	/url_slug:incompressible-flow?b-				

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

q=incompressible%20flow&include_synonyms=no&q=incompressible%20flow%20&sort_on=default

Course Code	ADVANCED REFRIGERATION AND	L	Т	P	С	
21D88101b	AIRCONDITIONING (PE-I)	3	0	0	3	
	Semester	Ι				
		•				
Course Object	ves: Student will be able to					
To teac	the students about the methods of Refrigeration and its types,	Psychr	ometry	and it	s	
priciple	s. Teaching the cycle analysis pertaining to various Refrigeration	on syste	ems, Ái	r-		
conditio	ning systems, cooling load calculations.	2				
Course Outcor						
Relate t	he performance of a vapour compression refrigeration cycles u	nder sp	ecified	inlet a	nd	
outlet c	onditions Identify the modifications required in an impossible	reverse	d Carno	ot cycl	e to	
convert	it into practical cycle for refrigeration applications		u Curii	n eyei	010	
Demon	strate the working principle and coefficient of performance of a	heat n	umn he	eat end	rine	
and refr	igerator Illustrate the working principles limitations of practic	al anua	amp, in	nia Li	Br-	
Water a	nd Electrolux vanour absorption refrigeration systems	ii aqua	ammoi	iia, Li	D1 -	
• Applyze	theoretical and practical steam jet refrigeration cycles with T	S and E	h char	te hu	tating	
merits	interference and practical secant jet refigeration eyeres with 1-	through	h globs	lo Uy a	rol	
eventua	lly elimination of production and utilization of ozone depleting	substa	nces C	laccifa	the	
equipm	any used for the refrigeration air conditioning purposes with su	itable r	notorial	c and	the	
refriger	ant used for the terrigeration, an conditioning purposes with su		liateriai	s and		
	int pairs.	NA SHE	l scala c	n a		
r CO4C	matric chart for the cooling load calculations of air conditionin	a syste	me Evi	n a Main tl	hormal	
comfor	conditions with respect to affective temperature, relative humi	dity of	a and f	hair in	apact	
on hum	an comfort productivity and health	uny, et	c. and t		iipaet	
	istinguish the equipment required for air conditioning systems	study t	ha onar	otina		
rincin	is a safety controls amployed in air conditioning systems.	study i	ringinlo	a of		
principi	metry to calculate and design the air conditioning systems. Asses	s the pl	ar purp	5 01 050		
Compa	the various heat pump circuits for heating, cooling purposes	with su	itable ir	use. Mustri	<u></u>	
applicat	ions	with su		luusui	ai	
UNIT – I		Lectur	e Hrs·0	9		
Refrigerants:		Leeta	• 1115.0	/		
Desirableproper	ties-thermodynamic-chemicalandtransportproperties-designation	nofref	rigerant	s inoi	oanic	
halo carbon refr	igerants - secondary refrigerants - Properties of mixtures of ref	rigeran	te	5 1101	Sume,	
Ozone depletion	potential and global warming potential_effect of refrigerants_	alternat	ive refr	ioeran	ts	
	potential and global warming potential—effect of terrigerants-	I octur	Hrs.0	0		
Vanour Comp	assion Refrigeration: Analysis and Performance of Complete	Vapolu	c mor) Assion		
Refrigeration st	stem Components of Vanour Compression PafrigerationSystem	vapou m·Theo	condens	ingun	i it	
Evaporators Ex	page non-second second compression complete anonsyste	III. I Het	onuens	mgun	ll—	
ODP and GWI)					
Compound Con	pression: Need: Compounding with external inter cooling. Els	sh mivi	ng Flag	h into	•	
cooling liquid	flash internal cooling Multi Pressure (Multistage) systems C	ascada	Sustem		-	
Applications	fiasii internai coomig – Mutti i ressure-(Muttistage)systems. C	ascaue	System	_		
		Lootur	- Urail	0		
Vonor observet	on Definition system. Simple and modified acres among		etam	7		
Poprosontatio	on Kenngeration system – Simple and mounted aqua–annua	om Th	stem oo fluid	laveto	m	
- Representatio	i on Encharpy –Concentration diagram. Entitudit – Droillide syst		ee nuit	i syste	111-	
Air Dofriconstin	n: Applications Air Craft Defineration Simple Destature T	lagara	otivo or	d Dad	huard	
ambient system	n. Applications – All Clair Kenigeration- Simple, Doolstrap, R	legener	auve di n. Dom		uceu	
annoient system	in a robustice of antisetions. Steam Jet reingeration	ii systei	n. Kepi	esenta	11011	
Un 1-S and II-S C	agrams – miniations and applications.	Dofuiar	rotion	Vorte	r tubo	
	Kenngeration systems, working principles of Thermo-electric	Leaf	a Lland	v ortez	x tube.	
$\frac{1}{1}$		Lectur	e Hrs:0	ソ		
	UN IU AIK CUNDITIUNING					
Psychometric properties and processes, sensible and latent heat loads, characterization, need for						

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

ventilation, consideration of Infiltration, load concepts of RSHF, ASHF, ESHF and ADP; concept of human comfort and effective temperature, comfort air conditioning, industrial air conditioning and requirements, air conditioning load calculations

$\mathbf{UNIT} - \mathbf{V}$

Lecture Hrs:09

AIR CONDITIONING SYSTEMS

Classification of equipment, cooling, heating humidification and dehumidification, filters, grills and registers, deodorants, fans and blowers, heat pump, heat sources, different heat pump circuits, applications.

Textbooks:

 Manohar Prasad, "Refrigeration and Air Conditioning" New Age International, 3rd Edition, 2015
 S. C. Arora, Domkundwar, A Course in Refrigeration and Air-conditioning, Dhanpatrai Publications, Edition 2014.

3. S. N. Sapali, "Refrigeration and Air-conditioning", PHI Learning, 2 nd Edition, 2011.

Reference Books:

C. P. Arora, Refrigeration and Air Conditioning Tata McGraw-Hill, 17th Edition, 2006. Ananthanarayanan, Basic Refrigeration and Air Conditioning, Tata McGraw-Hill, 2015. R.K.Rajput, A text of Refrigeration and Air Conditioning S. K. Kataria& Sons, 3rd Edition, 2009. P. L. Ballaney, Refrigeration and Air Conditioning Khanna Publishers, 16th Edition, 2015.

Online Learning Resources:

http://ecoursesonline.iasri.res.in/course/resources.php?id=445

Course Code	DESIGN OF THERMAL SYSTEMS	L	Т	Р	С			
21D88101c	Program Elective Course - I	3	0	0	3			
	Semester	Ι						
Course Objecti	ves: Student will be able to							
Knowthee	Knowtheconceptsofheatexchangersandbasicdesignmethodsofheatexchangers							
 Achieve an understanding of the basic concepts of Vaporizers, Evaporators and Re boilers, Extended Surfaces. 								
Course Outcom	Course Outcomes (CO): Student will be able to							
• Understar etc.	d the concept of Heat exchanger design, extended surfaces and design	gn of	coolin	ig tow	/ers			
UNIT – I			Lect	ure H	rs:09			
Classification of	neat exchangers: Introduction, Recuperation and Regeneration-Tu	bular l	neat e	xchan	gers:			
double pipe, shell heat exchanger, L Basic Design Me coefficient – LMT heat exchanger de Double Pipe Hea temperature, avera	and tube heat exchanger, Plate heat exchangers, Gasketed plate heat amella heat exchanger, extended surface heat exchanger, Plate fin, a hods of Heat Exchangers: Introduction, Basic equations in design D method for heat exchanger analysis– parallel flow, counter flow, sign calculations. t Exchanger: Film Coefficient for fluids in annulus, fouling factors gefluidtemperature, the calculation of double pipe exchanger, Double p	t excha and Tu , Over multi , calor ipe exc	anger, bular all hea pass, ific chang	spira fin. at trar cross ers in	l plate 1sfer flow			
series, parallel arr	angements.							
UNIT – II			Lect	ure H	rs:09			
and tube heat excl difference in a 1-2 drop, tube side pro and tube heat excl Condensation of condenser, vertica	angers – shell side film coefficients, Shell side equivalent diameter heat exchanger, influence of approach temperature on correction fa ssure drop, Analysis of performanceof1-2heatexchanger, and desig hangers. Flow arrangements for increased heat recovery, the calcula single vapors: Calculation of a horizontal condenser, vertical cond- l condenser–sub-cooler, horizontal condenser–vertical reflux type c	, the tr actor, s n calcu tions c enser, onden	ue ter shell s ilation if2-4e De-su ser, co	npera ide pr n of sl xchan per ho onden	ture ressure hell ngers. eater sation			
		Lectu	ire Hr	s·09				
Vaporizers, Evap	orators and Re boilers: Vaporizing processes, forced circulation vaporizing exchangers, calculations of are boiler	aporiz	zing e	xchan	igers,			
LINIT IV		Lectu	ire Hr	e.U0				
Extended Surfac efficiency curve, o tube exchanger. Direct Contact H the Lewis number balance	es: Longitudinal fins, weighted fin efficiency curve, calculation of a alculation of a double pipe finned exchanger, calculation of a longi eat Exchanger: Cooling towers, relation between wet bulb and dev, and classification of cooling towers, cooling tower internals and the	tudina w point e roll	le pipe l fin s t temp of fill	e fin hell a peratu , Heat	nd res,			
UNIT – V		Lectu	re Hr	s:09				
Heat transfer by s cooling towers, D	multaneous diffusion and convection. Analysis of cooling tower re-	quirem	ents, perfo	Desig orman	n of ice.			
Textbooks:			<u> </u>					
 Process Heat Cooling To Heat Exchat Reference Book 	tt Transfer, D.Q.Kern, TMH. wers, J.D.Gurney nger Design, A.P. Fraas and M.N. Ozisick. John Wiely& sons s:	, New	York					

- 1. Cooling Towers, J.D.Gurney
- 2. Heat Exchanger Design, A.P.Fraas and M.N.Ozisick. John Wiely& sons, NewYork.

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

Online Learning Resources:

https://www.researchgate.net/publication/332109240_Design_of_thermal_systems

Course Code	FUELS COMBUSTION & ENVIRONMENT	L	Т	Р	С		
21D11104a	Program Elective Course - II	3	0	0	3		
IN	Semester	-	J	~	~		
Course Objectives: Student will be able							
To know the concepts of stoichiometry & kinetics for Solid, Liquid & Gaseous Fuels.							
To achieve an un	derstanding of the basic concepts of combustion equipments						
Course Outcome	s (CO): Student will be able to						
Understa	nd the concept to fvarious fuels and combustion and effect of	environn	nent.				
UNIT – I	≜	Le	ecture Hi	s:9			
CHARACTERI	ZATION						
Fuels - Types and	Characteristics of Fuels - Determination of Properties of Fue	els – Fuels	sAnalysi	S-			
ProximateandUlt	mateAnalysis-MoistureDetermination-CalorificValue		·				
Gross & Net Calo	rific Values - Calorimetry - DuLong's Formula for CV Estin	nation -Fl	ue gas A	nalysis -	-		
Orsat Apparatus	Fuel & Ash Storage & Handling - Spontaneous Ignition Ter	nperature	s.	-			
UNIT – II		Le	ecture H1	s:9			
SolidFuels							
Types - Coal Fan	ily - Properties - Calorific Value - ROM, DMMF, DAF and I	Bone Dry	Basis - l	Ranking	-		
Bulk & Apparent	Density - Storage - Wash ability - Coking & Caking Coals -	Renewab	le Solid	Fuels -			
Biomass - Wood	Waste - Agro Fuels – Manufactured Solid Fuels.						
LiquidFuels							
Types - Sources -	Petroleum Fractions - Classification - Refining - Properties of	of Liquid	Fuels - C	alorific			
Value, Specific C	ravity, Flash & Fire Point, Octane Number, Cetane Number e	etc, -Alco	hols-Tar	SandOil	—		
Liquefaction of S	olid Fuels.						
UNIT – III		Le	ecture Hi	s:9			
GASEOUSFUE	LS						
Classification-Co	mposition&Properties-EstimationofCalorificValue-GasCalor	imeter. R	ich & Le	an Gas -	-		
Wobbe Index - N	atural Gas - Dry & Wet Natural Gas -Stripped NG - Foul & S	weet NG	- LPG -	LNG - (CNG		
- Methane - Prod	icer Gas -Gasifiers - Water Gas - Town Gas - Coal Gasificati	on - Gasi	fication I	Efficienc	су -		
Non – Thermal R	pute-Biogas-Digesters -Reactions -Viability-Economics.		1 -				
UNIT – IV			Lectur	e Hrs:9			
COMBUSTION	STOICHIOMETRY&KINETICS		a				
Stoichiometry - N	Tass Basis & Volume Basis - Excess Air Calculation - Fuel &	Flue Gas	s Compo	sitions -			
Calculations -Rap	and Methods - Combustion Processes -StationaryFlame - Surfa	ace or Fla	meless C	Combust	10n -		
Submerged Com	bustion - Pulsating & SlowCombustion Explosive Combustion	n. Mechai	10^{10} C	Combust	10n -		
Ignition & Ignitic	nEnergy -Spontaneous Combustion – Flame Propagation -So	lid, Liqui	d& Gase	ousFuel	IS		
Compustion - Fla	me Temperature - Theoretical, Adiabatic & Actual – Ignition	Limits -I	limits of				
Inflammability.			Lastur	- IImarO			
$\frac{\text{UNII} - \text{V}}{\text{COMPLISTION}}$	EALIDMENTS		Lectur	e Hrs:9			
Cost Purning Equ	EQUIFINIENTS	ing Eiro	dDad&D	aavalad	Dad		
CycloneFiring_Sr	mpinents - Types - Fulvenzeu Coar Filling - Fuluizeu Deu Fil weaderStokers-VibratingGrateStokers - Sprinkler Stokers, Tr	aveling G	uDeu&N rate Stok	ers Oil	Deu-		
Burners - Vapori	ving Burners Atomizing Burners - Design of Burners Gas Bu	$\frac{1}{1}$	tmosphe	ric Gas			
Burners $-\Delta ir \Delta s$	piration Gas Burners - Burners Classification according to Fla	inne Struc	tures – F	actors			
Affecting Burner	w Combustion		itures r	actors			
Textbooks:	se compustion.						
SamirSarkar Fuel	s&Combustion 2ndEdition OrientLongman 1990						
Bhatt VoraStoich	iometry 2ndEdition TataMcgrawHill 1984						
BlokhAG.HeatTr	ansferin Steam BoilerFurnace. HemispherePublishingCorpn 1	988.					
Reference Books:							
CivilDavies CalculationsinFurnaceTechnology PergamonPress Oxford 1966							
CIVIDAVIES.Calc	SharmaSP, MohanChander, Fuels&Combustion, TataMcgrawHill, 1984						

Online Learning Resources:
https://nptel.ac.in/courses/112/106/112106299/
https://nptel.ac.in/courses/103/105/103105110/

Course Code	FINITE ELEMENT ANALYSIS INTHERMAL	L	Т	P	С		
21D88102a	ENGINEERING (PE-II)	3	0	0	3		
Semester				I			
Course Objectives: Student will be able							
To provide the fundamental concepts of the theory of the finite element method							
To deve	lop proficiency in the application of the finite element method (m	odeling,	analys	sis, and	1		
interpret	ation of results) to realistic engineering problems through the use	of a maj	jor cor	nmerc	ial		
general-	purpose finite element code.						
Course Outcom	es:- Student will be able						
To obtain	n an understanding of the fundamental theory of the FEA method	;					
To deve	lop the ability to generate the governing FE equations for systems	governe	ed by p	oartial			
differen	ial equations;						
To unde	rstand the use of the basic finite elements for structural application	ns using	truss,	beam,	frame,		
and plan	e elements; and						
To unde	rstand the application and use of the FE method for heat transfer I	oroblems	5				
UNIT – I	Lec	ture Hrs:	:9				
Introductionto	FEM :basicconcepts,applicationofFEM,generaldescription,advanta	ges of F	EM, c	ompar	ison of		
FEM with other	methods : finite difference						
method, variation	almethod, Galerkin Method, basicelements hapes, interpolation function	ion.Virt	ual en	ergy			
principle, treatm	ent of boundary conditions, solution of system						
ofequations, basi	cequationsofelasticity, straindisplacementrelations.						
1-D structural	oroblems: axial bar element, stiffness matrix, load vector, tempera	ature eff	ects, q	uadrat	ic		
shape function, a	analysis of trusses-plane truss and space truss elements.						
UNIT – II	Lec	ture Hrs:	:9				
Analysis of bea	ms, frames-Hermite shape functions, stiffness matrix, load vector	r proble	ms, ar	alysis.			
2-Dproblems-C	ST, force terms, stiffness matrix and load vector, boundary condit	ions, Iso	-parar	netric			
element, Quadri	c element, shape functions, Numerical Integration, 3-Dproblems-	Tetrahec	lron el	ement,	,		
Jacobian matrix,	stiffness matrix.						
UNIT – III	Lec	ture Hrs:	:9				
Axis Symmetrie	e formulations, Finite Element Modeling- Triangular element, Pr	oblem m	odelli	ng and	l		
Boundary condition	ions						
Dynamic consid	lerations, Dynamic equations, consistent mass matrix, Eigen valu	es, Eige	n vect	or, nat	ural		
frequencies, mo	le shapes, modal analysis.						
UNIT – IV	Lecture	Hrs:9					
Scalar field pro	blems– Generalized Heat Conduction Equation – Variation Princ	iple –Bo	undar	y Conc	litions		
– Internal heat g	eneration, heat flux and convection - 1-D SteadystateHeatconduct	ion–The	rmallo	badvec	tor-1-		
Dfinelement-Qu	adraticfinelements						
ID unsteady stat	e heat conduction-Thermal loadvector-2-Dsteady state heat condu	iction-C	loncep	ts of 3I) heat		
conduction							
Finite Element F	ormulation of Torsion, Potential flow, seep age and fluid flow inc	lucts.					
UNIT – V	Lecture	Hrs:8					
Computer Imp	ementation : Pre-processing, mesh generation, elements connect	ing, bou	ndary	condit	ions,		
input of material	and processing characteristics- solutions and post processing-ov-	erview a	nd app	olicatio	on		
packages							
Textbooks:							
Finite Element N	Iethods, Alavala, PHI						
Introduction to finite elements in engineering, Tirupathi K. Chandrapatla and Ashok							
D. Belagundu							
Reference Boo	ks:						

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 2. An Introduction to Finite Element Methods, S.S. Rao, Pegamon, NewYork.
- 3. The Finite element method in Engineering science, O.C.Aienkowitz, Mc. GrawHill.
- 4. Concepts and applications of finite element analysis, Robert Cook
- 5. Finite Element Methods in Engineering Analysis, K.J.Bathe.
- 6. The finite element method in Heat transfer analysis Lewis R.W ,Morgan.K,Thomas H.R. and Seetharaman K.N, John Wiley, 1994

Online Learning Resources:

 https://open.umich.edu/find/open-educational-resources/engineering/introduction-finite-elementmethods

Course Code	DESIGN OF HEAT EXCHANGERS	L	Т	Р	С					
21D88102b	Program Elective Course - II	3	0	0	3					
	Semester	er I								
Course Objectives: Student will be able										
To learn	the thermal and stress analysis on various parts of the heat excha	ngers								
To analy	ze the sizing and rating of the heat exchangers for various application	ations	5							
Course Outcome	es:- Student will be able to									
design t	ne heat exchanger based on the information provided for a particu	lar ap	plicatio	n and	do the					
cost eco	nomic analysis	-	-							
UNIT – I		Lec	ture Hrs	·9						
FUNDAMENT	ALSOFHEATEXCHANGER	Lee		.,						
Temperature dis	tribution and its implications types $-$ shell and tube heat exchange	ers –r	egenerat	tors an	d					
recuperators – a	nalysis of heat exchangers – LMTD and effectiveness method.		0							
UNIT – II		Lec	ture Hrs	:9						
FLOWANDST	RESSANALYSIS									
Effect of turbule	nce - friction factor - pressure loss - stress in tubes - header sheet	ets an	d pressu	ire ves	sels-					
thermal stresses,	shear stresses-types of failures.									
UNIT – III		Lec	ture Hrs	:9						
DESIGNASPE	CTS									
Heat transfer and	d pressure loss – flow configuration – effect of baffles – effect of	devia	tions fro	om ide	ality –					
design of double	pipe-finnedtube-shellandtubeheatexchangers-simulationofheatexc	chang	ers.							
UNIT – IV		Lec	ture Hrs	:8						
COMPACTAN	IDPLATEHEATEX CHANGERS									
Types-meritsan	Idemerits-designofcompactheatexchangers, plateheatexchangers									
Performance inf	luencing parameters-limitations.	τ		.0						
UNII - V		Lec	ture Hrs	:8						
Designof	DANDCUULINGIUWEKS	tion								
Textbooks	andevaporativecondensers-coomigtower-performancecharacteris	ues.								
1 SadikKakacan	dHonotanLiu HeatExchangersSelection PatingandThermalDesign		Dross /	2002						
Reference Bool		I,CIX	_ 11035,2	2002						
Arthur PFrass H	Jeat Exchanger Design JohnWiley&Sons 1988									
Taborek.T. Hew	Taborek T. Hewitt G.F. and Afgan N. Heat Exchangers. Theoryand Practice. McGraw-HillBookCo 1980									
Hewitt, G.F. Shires, G.L. and Bott, T.R. Process Heat Transfer, CRCPress, 1994.										
Online Learnin	g Resources:									
https://nptel.ac.i	n/courses/112/105/112105248/									

г

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	THERMAL SCIENCE LABORATORY	L	Т	P	C		
21D88103		0	0	4	2		
	Semester	er I					
Course Object	ves: Student will be able						
• To become	familiar with the instruments and equipment for the measurement o	f exha	aust er	nission	is.		
• To become	familiar with heat transfer measurement.						
To become	familiar with solar parameters.						
Course Outcon	nes (CO): Student will be able to						
Become fan	niliar with the measurement equipments and procedure for exhaust	emiss	ion, he	eat trar	sfer and		
solar param	eters						
List of Experin	nents:						
1. To find the ex	(haust emissions of an automobile (HC, CO, NOX).						
2. Analysis of e	xhaust gases on IC engine.						
3. Combustion a	analysis of CI engine						
4. To find Octar	ne number of given blends of fuel.						
5. Performance	analysis of Heat Pipe						
6. Two Phase fl	ow heat transfer estimation.						
7. To estimate t	he COP of a vapour compression refrigeration system (Refrigerator)).					
8. To find the so	plar flat plate collector efficiency.						
9. To find direct	solar incident flux absorbed by using Pyranometer or concentratic	parab	olic co	ollector	r.		

10. Case study for energy audit.

Course Code	ADVANCED HEAT AND MASS TRANSFER	L	Т	Р	С					
21D11205	LABORATORY	0	0	4	2					
	Semester			II						
Course Objective	Course Objectives: Student will be able to									
Become famil	liar with the instruments and equipment for the measurement of	thern	nal cor	ductiv	ity, heat					
transfer coeffi	cient and other heat transfer parameters.				-					
Course Outcome	s (CO): Student will be able to									
• Become fami	liar with the measurement equipments and procedure for the	mea	sureme	ent of	thermal					
conductivity,	heat transfer coefficient and other heat transfer parameters.									
	•									
List of Experime	nts:									
1. Thermal condu	activity of insulating powder material through Concentric Sph	ere aj	pparati	ıs. 2. '	Thermal					
conductivity of in	sulating material through lagged pipe apparatus									
3. Overall heat tra	nsfer co-efficient through Composite Slab Apparatus									
4. Thermal Condu	ctivity of metal (conductor).									
5. Heat transfer in	pin-fin									
6. Experiment on	Transient Heat Conduction									
7. Heat transfer co	befficient in forced convection.									
8. Heat transfer co	befficient in natural convection									
9. Experiment on	Parallel and counter flow heat exchanger.									
10. Emissivity of	a gray body through Emissivity apparatus.									
11. Experiment or	n Stefan Boltzman Apparatus.									
12. Heat transfer i	n drop and film wise condensation.									
13. Experiment or	n Critical Heat flux apparatus.									
14. Study of heat	pipe and its demonstration.									
15. Study of Two	– Phase flow									

Course	Code	RESEARCH METHODOLOGY AND IPR	L	Т	Р	С
21DRM	[101		2	0	0	2
		Semester			Ι	<u> </u>
Course	Object	ves:				
•	Identify	an appropriate research problem in their interesting domain.				
•	Unders	and ethical issues understand the Preparation of a research project th	esis re	eport.		
• Understand the Preparation of a research project thesis report						
•	Unders	and the law of patent and copyrights				
•	Unders	and the Adequate knowledge on IPR				
Course	Outcor	nes (CO): Student will be able to				
course	Analyze	research related information				
•	Follow	esearch ethics				
•	Underst	and that today's world is controlled by Computer Information Technology	v but	tomo	rrow w	orld
	will be 1	uled by ideas, concept, and creativity.	,, out	tonio		ona
•	Underst	anding that when IPR would take such important place in growth of ind	ividua	ls & 1	nation,	it is
	needless	to emphasis the need of information about Intellectual Property Right	to be	prome	ted an	ong
	students	in general & engineering in particular.				_
•	Underst	and that IPR protection provides an incentive to inventors for further resear	ch wo	ork and	investr	nent
	in R &	D, which leads to creation of new and better products, and in turn brings	about,	econor	nic gro	wth
	and soci	al benefits.				
UNIT -	Ι	Lecture Hrs.	•			
Meaning	g of res	earch problem, Sources of research problem, Criteria Characteristi	cs of	a good	d resea	ırch
problem	n, Errors	in selecting a research problem, scope, and objectives of research	proble	em. A	pproac	ches
of invest	stigation	of solutions for research problem, data collection, analysis, inte	rpreta	ation,	Necess	sary
instrum	entation	S				
UNIT -	II	Lecture Hrs	:			
Effectiv	e litera	ure studies approaches, analysis Plagiarism, Research ethics, Effec	tive to	echnica	al writ	ing,
how to	write re	port, Paper Developing a Research Proposal, Format of research pr	oposa	ıl, a pr	esenta	tion
and asse	essment	by a review committee.				
UNIT -	III	Lecture Hrs.	,			
Nature	of Inte	llectual Property: Patents, Designs, Trade and Copyright. Proce	ess o	f Pate	nting	and
Develop	oment:	technological research, innovation, patenting, development. In	terna	tional	Scena	rio:
Internat	ional co	operation on Intellectual Property. Procedure for grants of patents, Pa	atentii	ng und	er PCT	
UNIT -	IV	Lecture Hrs.				
Patent 1	Rights:	Scope of Patent Rights. Licensing and transfer of technology. Patent	atent	inform	nation	and
database	es. Geog	graphical Indications.				
UNIT -	V					
New D	evelopr	nents in IPR: Administration of Patent System. New developm	ents	in IPF	R: IPR	of
Biologie	cal Syst	ems, Computer Software etc. Traditional knowledge Case Studies, IP	R and	l IITs.	,	
Textbo	oks:					
1011000	1 Stua	rt Melville and Wayne Goddard "Research methodology an intro	ductic	n for	science	e &
	enginee	ring students"	auetre	/11 101	serene	
	2 Way	ne Goddard and Stuart Melville. "Research Methodology: An Introdu	iction	,,		
	2. Wuy	ie obaaara and otaart morrine, recourch mothodology. All hilloud				

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

Reference Books:

- 1. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
 - 2. Halbert, "Resisting Intellectual Property", Taylor & amp; Francis Ltd ,2007.
 - 3. Mayall, "Industrial Design", McGraw Hill, 1992.
 - 4. Niebel, "Product Design", McGraw Hill, 1974.
 - 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
 - 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

Course Code ADVANCED IC ENGINES	L	Т	Р	С					
21D88201	3	0	0	3					
Semester			II						
Course Objectives: Student will be able									
To understand the underlying principles of operation of different IC Engines and co	ompon	ents.							
To provide knowledge on pollutant formation, control, alternate fuel etc.									
Course Outcomes:- Student will be able to									
compare the operations of different IC Engine and components and can evaluate th	e pollı	itant fo	rmatio	n,					
control, alternatefuel	-								
IINIT – I	Lecti	ıre Hrs	•9						
SPARKIGNITIONENGINES	Leett		.,						
SparkignitionEnginemixturerequirements-Fuel-Injectionsystems-Monopoint, Mul	lti poir	nt iniec	tion. D	irect					
injection – Stages of combustion – Normal and abnormal combustion –factors affe	cting k	nock-	Comb	ustion					
chambers.	U								
UNIT – II	Lectu	are Hrs	:9						
COMPRESSIONIGNITIONENGINES									
States of combustion in C.I. Engine-Direct and indirect injection systems-Combus	stion cl	hamber	s – Fu	el					
spray behaviour - spray structure, spray penetration and evaporation-air motion-Ir	ntrodu	ction to	Turbo)					
charging.									
UNIT – III	Lectu	ire Hrs	:9						
POLLUTANTFORMATIONANDCONTROL									
Pollutant- Sources - Formation of carbon monoxide, Un burnt hydro carbon, NOx	, Smoł	ce and							
Particulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematter-MethodsofcontrollingEmissions-CatalyticconvertersandParticulatematte	ate Tra	ps - N	lethods	of					
measurements and Introduction to emission norms and Driving cycles.									
UNIT – IV	Lectu	are Hrs	:9						
ALTERNATIVE FUELS									
Alcohol, Hydrogen, Natural Gas and Liquefied Petroleum Gas- Properties, Suitabil	lity, M	erits a	nd Dem	nerits					
as fuels, Engine Modifications.	.		0						
	Lectu	are Hrs	:8						
RECENTTRENDS			· •	21					
Lean Burn Engines – Stratified charge Engines – homogeneous charge compression	n ignit	ion eng	gines-F	lasma					
Ignition–Measurement techniques–laser Doppler, Anemometry.									
1 KK Develingen Leteral Combertier Freine Freiheruntele SeiterbBebliertie	200	2							
I.K.K.Ramalingam, Internal Combustion Engine Fundamentals, ScitechPublication	ns,200	2.							
1 D.D. Mothur and D.D. Sharma, Internal combustion Engines									
1. K.B. Mathur and K.P. Sharma, Internal compusition Engines.									
2. v.Ganesan, Int. Combustion Engines, IEdition, TMH, 2002.									
3. Duffy Smith, auto fuel Systems, The Good Heart Willox Company, Inc., 198.									
Unline Learning Resources:		•							
1. https://ocw.mit.edu/courses/mechanical-engineering/2-61-internal-comb	ustion	n-engin	nes-spi	ing-					
2017/									

21D11204a 3 0 0 3 Semester II	Course Code	COMPUTATIONAL FLUID DYNAMICS	L	Т	P	С
Semester II Course Objectives: Student will be able • To develop finite difference and finite volume discredited forms of the CFD equations. • To formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. Course Outcomes:- Student will be able to • Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNIT - I Clearse Outcomes:- Student will be able to • Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNIT - I Course Outcomes:- Student will be able to Lecture Hrs:9 GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT - I Lecture Hrs:9 Transient one-dimensional conduction, Two and Three dimensional steady state problems, Finite difference approach. UNIT - II Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Lecture Hrs:9 Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar a	21D11204a		3	0	0	3
Course Objectives: Student will be able To develop finite difference and finite volume discredited forms of the CFD equations. To formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. Course Outcomes:- Student will be able to • Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNIT - I Lecture Hrs:9 GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT - I Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one-dimensional problem, Two- dimensional Transient Problems. UNIT - II Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 Convectrion-Diff		Semester			II	
Course Objectives: Student will be able • To develop finite difference and finite volume discredited forms of the CFD equations. • To formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. Course Outcomes:- Student will be able to • Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNIT - I Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT - II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem,Two- dimensional Transient Problems. UNIT - III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one-dimensional convection – Diffusion - Introduction to finite element method – Soluti						
To develop finite difference and finite volume discredited forms of the CFD equations. To formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. Course Outcomes:- Student will be able to Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNIT - I Lecture Hrs:9 GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT - II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT - II Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFER Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional on fusite adaytwo-dimensional convection – Diffusion for segnet one- simulation by FEM UNIT - V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks:	Course Objecti	ves: Student will be able				
To formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. Course Outcomes:- Student will be able to Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNIT - I Lecture Hrs:9 GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT - II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT - III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional and Two-Dimensional Convection – Diffusion Unsteady one- dimensional and Two-Dimensional Convection – Diffusion by FEM – In comprossible flow – Simulation by FEM UNIT - V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks:	 To deve 	lop finite difference and finite volume discredited forms of the CFD equ	uatio	ns.		
Course Outcomes:- Student will be able to Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNIT - I Lecture Hrs:9 GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT - II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one-dimensional problem, Two- dimensional Transient Problems. UNIT - III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one-dimensional convection-Diffusion, Unsteadytwo-dimensional convection-Diffusion Introduction to finite element me	To form	ulate explicit & implicit algorithms for solving the Euler Eqns & Navie	r Sto	kes E	Eqns.	
 Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns. UNT – I Lecture Hrs:9 GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT – II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one-dimensional problem, Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 COMPUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one-dimensional problem, Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one-dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow	Course Outcom	es:- Student will be able to				
UNIT - I Lecture Hrs:9 GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. Lecture Hrs:9 CONDUCTIONHEATTRANSFER Lecture Hrs:9 Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one-dimensional problem, Two- dimensional Transient Problems. Lecture Hrs:9 UNIT - II Lecture Hrs:9 Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Lecture Hrs:8 Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one-dimensional convection – Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT - V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Ture U Lecture Hrs:9 UNIT - V Lecture	Formula	te explicit & implicit algorithms for solving the Euler Eqns & Navier St	okes	Eqns	5.	
GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT – II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional convection–Diffusion, Unsteady two-dimensionalconvection–Diffusion Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models,	UNIT – I		Lec	ture I	Hrs:9	
Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica IErrors, Grid Independence Test. UNIT – II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Mural Idhar,K.,and Sundarajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	GOVERNING	DIFFERENTIAL EQUATION AND FINITE DIFFERENCE MET	HOI)		
method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerica lErrors, Grid Independence Test. UNIT – II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional on y FEM UNIT – V Lecture Hrs:9 UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks:	Classification, In	nitial and Boundary conditions, Initial and Boundary value problems. Fi	inite	differ	ence	
Independence Test. UNIT – II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem,Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensionalconvection–Diffusion,Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow - Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Mural Mark,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	method, Central	, Forward, Backward difference, Uniform and non-uniform Grids, Num	erica	lErro	ors, Gi	rid
UNIT - II Lecture Hrs:9 CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT - III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Lecture Hrs:9 Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Lecture Hrs:8 Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - In comprossible flow - Simulation by FEM Lecture Hrs:9 Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow - Simulation by FEM Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing Muralishing With Public Publishing	Independence T	est.				
CONDUCTIONHEATTRANSFER Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing	UNIT – II		Lec	ture I	Hrs:9	
Steady one-dimensional conduction, Two and Three dimensional steady state problems, Transient one- dimensional problem, Two- dimensional Transient Problems. UNIT – III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional convection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks:	CONDUCTIO	NHEATTRANSFER				
dimensional problem, Two- dimensional Transient Problems. Lecture Hrs:9 UNIT - III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Lecture Hrs:8 Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one-dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - In comprossible flow - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow - Simulation by FEM UNIT - V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Textbooks: Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing	Steady one-dime	ensional conduction, Two and Three dimensional steady state problems,	Trai	nsient	t one-	
UNIT - III Lecture Hrs:9 INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Lecture Hrs:8 Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one-dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - In comprossible flow - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow - Simulation by FEM UNIT - V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	dimensional pro	blem, Two- dimensional Transient Problems.				
INCOMPRESSIBLEFLUIDFLOW Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	UNIT – III		Lec	ture I	Hrs:9	
Governing Equations, Stream Function – Verticity method, Determination of pressure for viscous flow, SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	INCOMPRESS	IBLEFLUIDFLOW				
SIMPLE Procedure of Patankar and spalding, Computation of Boundary layer flow, Finite difference approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow - Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	Governing Equa	tions, Stream Function - Verticity method, Determination of pressure f	or vis	scous	flow,	
approach. UNIT – IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensionalconvection–Diffusion, Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	SIMPLE Proced	ure of Patankar and spalding, Computation of Boundary layer flow, Fin	ite d	iffere	nce	
UNIT - IV Lecture Hrs:8 CONVECTIONHEATTRANSFERANDFEM Lecture Hrs:8 Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional convection – Diffusion, Unsteadytwo-dimensional convection – Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT - V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	approach.					
CONVECTIONHEATTRANSFERANDFEM Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional convection – Diffusion, Unsteady two-dimensional convection – Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM Lecture Hrs:9 UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	UNIT – IV		Lec	ture I	Hrs:8	
Steady One-Dimensional and Two-Dimensional Convection – Diffusion, Unsteady one- dimensional convection – Diffusion, Unsteady two-dimensional convection – Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow - Simulation by FEM UNIT – V ILecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	CONVECTIO	NHEATTRANSFERANDFEM				
dimensionalconvection–Diffusion,Unsteadytwo-dimensionalconvection–Diffusion - Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow - Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	Steady One-Dim	nensional and Two-Dimensional Convection - Diffusion, Unsteady one	-			
 Introduction to finite element method – Solution of steady heat conduction by FEM – In comprossible flow – Simulation by FEM UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing 	dimensionalcon	vection-Diffusion,Unsteadytwo-dimensionalconvection-Diffusion				
 Simulation by FEM UNIT - V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models - One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing 	- Introduction to	finite element method - Solution of steady heat conduction by FEM -	In co	mprc	ossible	flow
UNIT – V Lecture Hrs:9 TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	– Simulation by	FEM				
TURBULENCEMODELS Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	UNIT – V		Lec	ture I	Hrs:9	
Algebraic Models – One equation model, K - Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	TURBULENC	EMODELS				
Prediction of fluid flow and heat transfer using standard codes. Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	Algebraic Mode	ls – One equation model, K - Models, Standard and High and Low Rey	nolds	num	iber m	odels,
Textbooks: Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	Prediction of flu	id flow and heat transfer using standard codes.				
Muralidhar,K.,and Sundararajan,T.,"Computational Fluid Flow and Heat Transfer", Narosa Publishing	Textbooks:					
	Muralidhar,K.,a	nd Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Nat	rosa]	Publis	shing	
House, New Deini, 1995.	House, New Del	hi,1995.			-	
Ghoshdasdidar, P.S., "Computer Simulation of flow and heat transfer" Tata Mc Graw Hill Publishing	Ghoshdasdidar,I	P.S.,"Computer Simulation of flow and heat transfer"Tata Mc Graw Hil	l Pub	lishii	ng	
CompanyLtd.,1998.	CompanyLtd.,19	998.				
Reference Books:	Reference Book	is:				

M.TECH. IN THERMAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 1. Subas, V. Patankar"Numerical heat transfer fluid flow", Hemisphere Publishing Corporation, 1980.
- 2. Taylor, CandHughes, J.B. "FiniteElementProgrammingoftheNavierStockEquation", Pineridge PressLimited, U.K., 1981.
- 3. Anderson, D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid Mechanic and Heat Transfer" Hemisphere Publishing Corporation, Newyork, USA, 1984.
- 4. Fletcher, C.A.J."Computational Techniques for Fluid Dynamics 1"Fundamental and General Techniques, Springer–Verlag, 1987.
- 5. Fletcher, C.A.J."Computational Techniques for Fluid Dynamics 2" Specific Techniques for Different Flow Categories, Springer– Verlag, 1987.
- 6. Bose, T.X., "Numerical Fluid Dynamics" Narosa Publishing House, 1997.

Online Learning Resources:

https://nptel.ac.in/courses/112/107/112107079/ https://www.cfd-online.com/Links/education.html

Course Code	INSTRUMENTATION FOR THERMAL ENGINEERING	L	Т	Р	С		
21D88202a	Program Elective Course - III	3	0	0	3		
	Semester]	n I	4		
Course Objecti	ves: Student will be able						
To prov	ide knowledge on various measuring instruments.						
• To prov	ide knowledge on advance measurement techniques.						
• To understand the various steps involved in error analysis and uncertainty analysis.							
Course Outcom	es:- Student will be able to						
Understand the	various steps involved in error analysis and uncertainty analysis.						
UNIT – I		Lec	ture H	rs:9			
MEASURMEN	TCHARACTERISTICS						
Instrument Class	sification, Characteristics of Instruments-Static and dynamic, experiment	ntal e	error ar	nalysis	3,		
Systematic and 1	andom errors, Statistical analysis, Uncertainty, Experimental planning	and s	electic	on of			
measuring instru	ments, Reliability of instruments.						
UNIT – II		Lec	ture H	rs:9			
MICROPROC	ESSORSANDCOMPUTERSINMEASURMENT						
Data logging and	d acquisition - use of sensors for error reduction, elements of micro con	npute	er inter	facin	g,		
intelligent instru	ments in use.	-			_		
UNIT – III		Lec	ture H	rs:9			
MEASURMEN	TOFPHYSICALQUANTITIES						
Measurement of	thermo-physical properties, instruments for measuring temperature, pre-	essure	e and f	low, t	ise		
of sensors for ph	iysical variables.						
UNIT – IV		Lec	ture H	rs:9			
ADVANCEMI	EASURMENTTECHNIQUES						
Shadow graph, S	Schlieren, Interferometer, Laser Doppler Anemometer, Hot wire Anemo	omete	r, heat	flux			
sensors, Teleme	try in measurement.						
UNIT – V		Lec	ture H	rs:9			
MEASURMEN	TANALYSERS						
Orsat apparatus,	Gas Analysers, Smoke meters, gas chromatography, spectrometry.						
Textbooks:							
Holman,J.P., Ex	perimental methods for engineers, McGraw-Hill, 1988.						
Barnery, Intellig	ent Instrumentation, Prentice Hall of India, 1988.						
Prebrashensky, V	V., Measurements and Instrumentation in HeatEngineering, Vol. 1 and 2, MIR	Publ	ishers.	,1980.			
Reference Book	is:						
1. Raman,	C.S.,Sharma,G.R.,Mani,V.S.V.,InstrumentationDevicesandSystems,Tat	aMc(Graw-				
Hill,Nev	vDelhi, 1983.						
2. Holman	, J.P., Experimental methods for engineers, McGraw-Hill, 1958.						
3. Barney,	IntelligentInstrumentation,PrenticeHallofIndia,1988						
4. Prebrash	nensky. V., Measurement and Instrumentation inHeatEngineering, Vol.1						
	Publishers, 1980.						
5. Raman,	C.S.Snarma, G.K., Mani, V.S. V., InstrumentationDevices and Systems,						
6. Tata Mc	Graw-Hill, New Delhi, 1983.						
7. Doeblin	, Measurement System Application and Design, McGraw-Hill, 1978.	000					
8. Morris.	A.S.,PrinciplesofMeasurementsandInstrumentationPrenticeHallofIndia, I	998					
Online Learni	ng Resources:						
1. https://mec	h.at.ua/HolmanICS.pdf						

Course Code	CRYOGENIC ENGINEERING	L	Т	Р	С				
21D88202b	Program Elective Course - III	3	0	0	3				
	Semester			II					
		1							
Course Objectives: Student will be able to									
Impart	basic knowledge of low temperature generation.	lifficul	ties	in m	aintain				
in glow	temperature and solutions		licos		amuam				
Understa	and applications of cryogenic refrigeration								
Understa	and storage of cryogenic liquids and equipments, instruments used								
Course Outcom	es:- Student will be able to								
• Unon th	a completion of the course student will be able to understand the u	an of a		ia arra					
real-time	e difficulties in storing cryogenic liquids		ryoger	ne syst	ems,				
UNIT – I		Lectu	ire Hrs	:9					
INTRODUCTI	ON								
Insight on Cryog	enics, Properties of Cryogenic fluids, Material properties at Cryos	genic T	emper	atures.					
Applications of	Cryogenics in Space Programs, Superconductivity, Cryo Metallurg	gy, Me	dical a	pplicat	ions.				
UNIT – II		Lectu	ire Hrs	:9					
LIQUEFACTI	DNCYCLES								
Carnot Liquefac	tion Cycle, F.O.M. and Yield of Liquefaction Cycles. Inversion Cu	urve –							
JouleThomsonE	ffect.LindeHampsonCycle,PrecooledLindeHampsonCycle,Claude	s Cycle	e Dual	Cycle,	Ortho-				
Para hydrogen c	onversion, Eollins cycle, Simpson cycle, Critical Components in L	iquefa	ction S	System	s				
UNIT – III		Lectu	ire Hrs	:9					
SEPARATION	OFCRYOGENICGASES								
Binary Mixtures	T-C and H-C Diagrams, Principle of Rectification, Rectification	Colum	n Anal	ysis-M	c Cabe				
Thiele Method.	Adsorption Systems for purification.								
UNIT – IV		Lectu	ire Hrs	:9					
CRYOGENIC	REFRIGERATORS								
J.T.Cryocoolers,	StirlingCycleRefrigerators,G.M.Cryocoolers,PulseTubeRefrigerat	ors							
Regenerators use	ed in Cryogenic Refrigerators, Dilution refrigerators, Magnetic Re	frigera	tors						
UNIT – V		Lectu	ire Hrs	:09					
HANDLINGO	CRYOGENS								
CryogenicDewa	;,CryogenicTransferLines.InsulationsusedinCryogenicSystems,Ins	trumei	ntation	tomeas	ureFlo				
w,LevelandTem	perature								
Textbooks:									
1.KlausD.Timm	erhausandThomasM.Flynn,CryogenicProcessEngineering,Plenum	Press,N	NewYo	rk,198	9				
2. RandallF. Bar	ron, Cryogenic Systems, McGraw-Hill, 1985.								
Reference Book	s:								
ScottR.B., Cryos	genicEngineering, VanNostrandandCo., 1962.								
HeraldWeinstoc	k,CryogenicTechnology,1969.								
RobertW.Vance,CryogenicTechnology,Johnwiley&Sons,Inc.,NewYork,London.									
Web References :									
www.nasa.gov	•								
www.crvogenics	ociety.org/								
www.iifiir.org/									
www.linde.com									
www.airliquide.	com/								
www.cern.ch									
www.nist.gov									

Course Code	THERMAL AND NUCLEAR POWER PLANTS	L	Т	P	С					
21D88202c	Program Elective Course - III	3	0	0	3					
	Semester			II						
Course Objectives: Student will be able to										
Impart knowledge about various components and equipments used in a thermal and nuclear power plant,										
their maintenance and performance analysis and economic analysis.										
Course Outcomes:- Student will be able to										
Understanding a	bout the components used, their operation and maintenance and pe	rforma	nce of	it.						
UNIT – I		Lectu	ire Hrs	:9						
Introduction – S	Sources of Energy, types of Power Plants, Direct Energy Conversion	on Sys	tem, E	nergy						
Sources in India,	Recent developments in Power Generation. Combustion of Coal,	Volun	netric A	Analysi	s,					
Gravimetric Ana	lysis, Flue gas Analysis.									
Steam Power Pl	ants: Introduction – General Layout of Steam Power Plant, Moder	n Coa	l-fired	Steam	Power					
Plants, Power Pla	ant cycles, Fuel handling, Combustion Equipment, Ash handling, I	Dust C	ollecto	ors.						
UNIT – II		Lectu	ire Hrs	:9						
Steam Generator	s: Types, Accessories, Feed water heaters, Performance of Boilers	, Wate	r Treat	ment,						
Cooling Towers,	Steam Turbines, Compounding of Turbines, Steam Condensers, J	et and	Surfac	e						
Condensers.										
Gas Turbine Po	wer Plant: Cogeneration, Combined cycle Power Plants, Analysis	, Wast	te-Hea	t Recov	very,					
IGCC Power Pla	nts, Fluidized Bed Combustion – Advantages & Disadvantages.	I								
UNIT – III		Lectu	ire Hrs	:9						
Nuclear Power P	lants: Nuclear Physics, Nuclear Reactors, Classification – Types o	f Reac	tors, S	ite Sele	ection,					
Methods of enric	hing Uranium, Applications of Nuclear Power Plants.									
Nuclear Power P	lants Safety: By-Products of Nuclear Power Generation, Economic	es of N	luclear	Power	•					
Plants, Nuclear I	Power Plants in India, Future of Nuclear Power.									
UNIT – IV		Lectu	ire Hrs	:9						
Economics of Po	ower Generation: Factors affecting the economics, Load Factor, Ut	ilizatio	on facto	or,						
Performance and	Operating Characteristics of Power Plants. Economic Load Sharin	ng, Dej	preciat	ion, Er	nergy					
Rates, Criteria fo	or Optimum Loading, Specific Economic energy problems.									
UNIT – V		Lectu	ire Hrs	:9						
Power Plant Inst	rumentation: Classification, Pressure measuring instruments, Ten	iperati	ire mea	asurem	ent					
and Flow measur	rement. Analysis of Combustion gases, Pollution–Types, Methods	of Co	ntrol.							
Textbooks:										
1. Power Plant	Technology, El Wakil.									
2. Power Plant Engineering, P.C. Sharma, Kotaria Publications.										
Reference Books:										
1. Power Plant E	1. Power Plant Engineering, P.K. Nag, TMH.									
Online Learning	g Resources:									
1. https://nptel.	ac.in/courses/112/103/112103243/									

Course Code	DESIGN OF THERMAL SYSTEMS	L	Т	Р	С				
21D88203a	Program Elective Course - IV	3	0	0	3				
	Semester	II							
Course Objectives: Student will be able									
• To learn basic principles underlying piping, pumping, heat exchangers; modeling and optimization in									
design of thermal systems.									
To develo	 To develop representational modes of real processes and systems. 								
To optimi	To optimization concerning design of thermal systems.								
Course Outcome	s:- Student will be able to								
Understand model	ing and optimization of Thermal systems.								
UNIT – I		Lectur	re Hrs:9						
DESIGNCONCE	PTS								
Design Principles,	Workable Systems, Optimal Systems, Matching of System Co	ompone	ents, Eco	onomic					
Analysis, Deprecia	ation, Gradient Present Worth factor.	.							
$\frac{\mathbf{UNIT} - \mathbf{II}}{\mathbf{VATUE}}$		Lectur	re Hrs:9						
MATHEMATICA	ALMODELLING		(
Equation Fitting, I	Nomography, Empirical Equation, Regression Analysis, Diff	erent IV	lodes of						
		Lectur	ra Hrs.0						
		Lectu							
MODELLING I	HERMALEQUIPMENTS	tion Co	lumna (7					
Pumps Simulation	n Studies Information Flow Diagram Solution Procedures	uion Co	numins (Joinpre	ssors,				
I unips, Sindiado	Biolitics , mormation riow Diagram , Solution riocedures.	Lectur	re Hrs·9						
OPTIMIZATION	N	Lectu	<u>ie 1115.</u>						
Modelling Heat E	xchangers, Evaporators, Condensers, Absorption and Rectifica	tion Co	olumns (Compres	ssors.				
Pumps, Simulation	n Studies, Information Flow Diagram, Solution Procedures.			I I	,				
UNIT – V		Lectur	re Hrs:9						
DYNAMICBEH	AVIOUR								
Steady state Simu	lation, Laplace Transformation, Feedback Control Loops, Stab	ility Ar	nalysis, 1	Non-					
Linearities.									
Textbooks:									
Stoecker W. F.,De	esign of Thermal Systems, Mc Graw Hill Edition, 1989.								
Bejan A., George T satsaronis, Michael J. Moran, Thermal Design and Optimization, Wiley, 1996.									
Reference Books:									
1. Kapur J.N., M	lathematical Modelling, Wiley Eastern Ltd, New York, 1989.								
2. Yogesh Jaluri	a, Design and Optimization of Thermal Systems, CRCPress, 2	007.							
3.RaoS. S., Engi	neering Optimization Theory and Practice, New Age Publishe	ers, 200	0						

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

Course Code	ENVIRONMENTAL ENGINEERING AND POLLUTION	L	Т	Р	С
21D88203b	CONTROL (PE-IV)	3	0	0	3
	Semester		I	II	
Course Object	ives: Student will be able				
To imp	art knowledge on the atmosphere and its present condition, global wa	rmir	ng and	1 eco	
legislat	ions.		C		
To deta	il on the sources of air, water and noise pollution and possible solution	ons f	or mi	tigating	5
their de	gradation.				
To elab	orate on the technologies available for generating energy from waste	•			
Course Outcor	nes:- Student will be able to				
Unders	tand detail on the sources of air, water and noise pollution and possib	le so	lutio	ns for	
mitigat	ing their degradation.				
		τ.		IIO	
		Lee	cture	Hrs:9	
INTRODUCT.	IUN		ار میں م		
Global atmosph	ieric change – green nouse effect – Ozone depletion - natural cycles -	mas	s and	energy	
I agialationa R	al balance – environmental chemistry and blology –impacts – enviro	dian	ental.		
indooroirquality	a controlmethodsondoguinments issues incirnellution control or some	uisp	ersion and	I—	
masurament	-controllitethousandequipments-issuesman ponution control- all sam	piing	g anu		
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Ιe	oture	Hrc.Q	
	I I I I I I I I I I I I I I I I I I I	LU		1113.7	
Air Pollution C	ontrol equipment for particulate matter & gaseous pollutants_ gravity	, cott	ling (hamhe	rc
centrifugal coll	ectors wet collectors fabric filters electrostatic precipitator (FSP) _	Δde	orntic	namoe	13,
Absorption Sci	ubbers. Condensation and Combustion	Aus	orptic	, iii,	
INIT – III		Le	ture	Hrs.9	
WATERPOLI	LITION	Let	cture	115.7	
Water resources	s - water pollutants - characteristics – quality - water treatment system	ns —v	vaste	water	
treatment- treat	ment, utilization and disposal of sludge- monitoring compliance with	stan	dards		
UNIT – IV		Lee	cture	Hrs:9	
WASTEMAN	AGEMENT				
Sources and Cla	assification–Solid waste–Hazardous waste-Characteristics– Collectio	n an	d Tra	nsporta	tion
- Disposal – Pro	ocessing and Energy Recovery – Waste minimization.			1	
UNIT – V		Lee	ture	Hrs:9	
OTHERTYPE	SOFPOLLUTIONFROM INDUSTRIES				
Noise pollution	and its impact - oil pollution - pesticides - instrumentation for pollut	ionc	ontrol	<u> </u>	
waterpollutionf	romtanneriesandotherindustriesandtheircontrol-				
environmentim	pactassessmentforvariousprojects –case studies.				
Textbooks:					
1.G.Masters (20	003):Introduction to Environmental Engineering and Science Prentice	e Hal	l of I	ndia Pv	rt
Ltd, NewDelhi.					
2.H.S.Peavy,	D.R, .Rowe, G.Tchobanoglous (1985): Environmental Engineerin	g M	c Gra	w - Hil	1
Book Compan,	NewYork.				
Reference Boo	ks:				
1.H.Ludwig, W	Evans (1991): Manual of Environmental Technology in Developing	g Co	ıntrie	s,	
International Bo	ook Company, Absecon Highlands, N.J.				
2.ArcadioP Sir	cero and G. A.Sincero, (2002): Environmental Engineering-A Desig	n Aj	pora	ch,	
Prentice Hall of	India Pvt Ltd, New Delhi				
Online Learnin	ng Resources:				

https://authors.library.caltech.edu

Course Code	ALTERNATIVE ENERGY SOURCES	L	Т	Р	C				
21D88203c	Program Elective Course - IV	3	0	0	3				
212002000	Semester	0	<u> </u>	II II					
	Somester			-					
Course Objectives: Student will be able									
To create conversion	To create awareness about the availability of various non-conventional energy sources, their conversion technology.								
Course Outcomes:-									
• Students will get an idea about the availability of Non- conventional energy sources, their conversion technologies, utilization, etc.									
UNIT – I		Lectur	re Hrs:9						
Solar Energy									
Sun as Source of Various Methods of Solar energy.	Energy, Availability of Solar Energy, Nature of Solar Energy, of using solar energy–Photo thermal, Photovoltaic, Photosyntl Hybrid wind energy systems - wind + diesel power, wind + cor	Solar E nesis, Pr rventior	nergy& resent & al grid,	Environ Future wind	ament. Scope				
+Photovoltaic sy	stem etc.	1							
UNIT – II		Lectur	re Hrs:9						
Biomass: Decenter Hass Generation and utilization, Properties of biomass, Agriculture Crop & Forestry residues used as fuels. Biochemical and Thermo –chemical Conversion, Combustion, Gasification, Biomass gasifies and types etc. Applications of Gasifies to thermal power and Engines, Biomass as a decentralized power generation source for villages Concept of Bio-energy: Photosynthesis process, Bio-fuels, Biomass resources Bio based chemicals and materials Thermo-chemical Conversion: Pyrolysis, Combustion, Gasification, and Liquefaction. Bio-Chemical Conversion: Aerobic and An aerobic conversion, Fermentation etc. Bio-fuels: Importance, Production and applications. Bio-fuels: Types of Bio-fuels, Production processes and technologies, Bio fuel applications, Ethanol as a fuel for I.C. engines, Relevance with Indian Economy. Bio-based Chemicals and Materials: Commercial and Industrial Products, Biomass, Feed stocks, Chemicals, Plastics, Fibers etc. UNIT – III Lecture Hrs:9 Bio methanation: Importance of biogas technology, Different Types of Biogas Plants. Aerobic and an aerobic bio conversion processes various substrates used to produce Biogas (cow dung, human and other agricultural waste, municipal waste etc.) Individual and community biogas operated engines and their use. Removal of CO2 and H2O, Application of Biogas in domestic, industry and vehicles. Bio-hydrogen									
UNIT – IV		Lectur	re Hrs:9						
Wind Energy: E ConversionTechn urbineblade, Vari	asics & Power Analysis, Wind resource assessment, Power nologiesandapplications, WindPowerestimationtechniques, Princ pusaspectsofwindturbine design,	iples of.	Aerodyr	namicso	fwindt				
UNIT – V		Lectur	re Hrs:9						
Wind Turbine Generators: Induction, Synchronous machine, constant V&F and variable V & F generations, Reactive power compensation. Site Selection, Concept of wind form & project cycle, Cost economics & viability of wind farm,									
Textbooks:		N T	1 100-	<u>``</u>					
Biomass Reneger Biomass for ener Ltd.1982)	able Energy–D.O.halland R.P.Overeed (John Wiley and Sons, gy in the developing countries–D.O.Hall ,G.W. barnard and P	Newyo A.Moss	rk,1987 (P) ergamoi	n Press				
Reference Book	5:								

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

Thermo chemical processing of Biomass, Bridgurater AV. Biomass as Fuel–L.P. White (Academicpress1981) Biomass Gasification Principles and Technology, Energy technology review No.67,-T.B. Read (Noyes Data Corp.,1981) Wind energy Conversion Systems– Freris L.L. (PrenticeHall1990) Wind Turbine Technology: Fundamental concepts of wind turbine technology Spera D.A. (ASME Press, NY,1994) **Online Learning Resources:** https://nptel.ac.in/courses/121/106/121106014/ https://www.edx.org/course/sustainable-energy

Course Code	SIMULATION LABORATORY	L	Т	Р	С		
21D88204		0	0	4	2		
Semester		II	•				
Course Objectiv	ves: Student will be able						
• To identify	the behavior of analytical models introduced in lecture to the actual	beha	vior of	f real t	fluid		
flows.	,						
• To explain the standard measurement techniques of fluid mechanics and their applications.							
• To illustrate	the students with the components and working principles of the	Hydr	aulic	machii	nes-		
different type	es of Turbines, Pumps, and other miscellaneous hydraulics machines.						
• To analyze the	ne laboratory measurements and to document the results in an appropri-	iate fo	rmat.				
Course Outcom	es:- Student will be able to						
• Describe the	measurement techniques of fluid mechanics and its appropriate applic	ation.					
• Interpret the	results obtained in the laboratory for various experiments.						
• Compare the	e results of analytical models introduced in lecture to the actual beha	vior o	of real				
fluid flows a	nd draw correct and sustainable conclusions.						
• Write a tech	nical laboratory						
List of Experime	nts :-						
1. Jet impact on t	flat and curved surfaces						
2. Measurement	of drag on a circular cylinder in high Reynolds number flow						
3. Energy loss m	easurements in subcritical and supercritical open channel flow						
4. Measurement	of fluid viscosity						
5. Determination	of friction factor as a function of Reynolds number in pipe flow						
6. Studying lam	inar-turbulent transition for flow in a tube						
7. Boundary laye	r flow over a flat plate						
8. Pressure distr	ibution around a circular cylinder in high Reynolds number flow						
9. Measurement	s using Forced Vortex Apparatus and Free Vortex Apparatus						
10. Measure the	losses in piping System						
11. Measure Fric	tion loss along a pipe						
12. Pulsating flow	w setup						
13. Flow Measu	ring Apparatus, (H10 Setup)						
14. Flow through	an Orifice (H4 Setup)						
15. Water Flow	Channel (H17 Setup)						

Cou	rse Code	COMPUTATIONALFLUIDDYNAMICS LABORATORY	L	Т	Р	С		
21D8	88205		0	0	4	2		
		Semester]	[
Cour	rse Objectivo	es: Student will be able to	1					
• I • F	 Develop finite difference and finite volume discredited forms of the CFD equations. Formulate explicit & implicit algorithms for solving the Euler Eqns & Navier Stokes Eqns 							
Cou	rse Outcome	s:- Student will be able to						
• <i>A</i> E	At the end of Eqns & Navie	the course student will able to formulate explicit & implicit algorither Stokes Eqns.	hm for	solvin	g the l	Euler		
List o	of Experimen	ts :-						
	 Simulation of Plane Poiseuille flow through long Parallel and Stationary Plates and Plotting Velocity Contours and Velocity Variation along the horizontal central line. Take the distance between the plates as 4 cm. Properties of fluid are y=0.000217m²/sp=800kg/m² 							
2. S	Simulation of he distance b Make si N/m ² /mand20	Couette flow when the upper plates is moving with a velocity of etween the plates as 4 cm properties of fluid are v= 0.000217 m ² /s, j mulations for a pressure gradient of 000Nm ² /mandreportthevariationofyelocitycontoursforeachcase.	f 40m/ p=800 ('s. Take kg/m ³)-30000	e)			
3. S v a	Simulation of water at 30°C along a wall. also obtain the	a channel flow (Tube flow) for a tube of diameter. 5 cm and tak at the entry of the tube of length 0.7m. A heat flux of 3000W/ Obtain the contours of velocity and temperature along the length of e centre line temperature and velocity of fluid.	the the main of the	fluid as mposec ube and	5 1 1			
4. S ti 3	 4. Simulation of a channel flow (Tube flow) for a tube of diameter 5 cm and take thefluidaswaterat30°Cat the entry of the tube length 0.7m .A Constant wall temperature of 300°C is imposed along the wall. Obtain the contours of Velocity and temperature along the length of the tube and also obtain the centre line temperature and velocity of fluid. 							
5. U i r l	 Unsteadysimulationofcompressibleflowofairthrough2Daconvergent–Divergent nozzle, with inlet and outlet of 0.2m size and both are joined by a throat section where the flow area is reduced by 10% and is of sinusoidal shape. Air enters the nozzle at a pressure of 0.9 bar and leaves at 0.73 bar. Obtain the contours o fvelocity, pressure and Mach number. 							
6. S	Simulationoff airandplottin	lowoveracircularcylinderofsize5cmfordifferentReynold'snumberva gthe contours of velocity and vorticity	lueso					
7. S	Simulation o lifferent type	f temperature counters for a square plate of size 0.2msubjects s of boundary conditions.	ed to					
8. 5	Simulation of	temperature counters for a pin fin in natural and forced convective	condit	ions				

Course Code	OPTIMIZATION TECHNIQUES & ITS APPLICATIONS	L	Т	Р	С		
21D88301a	Program Elective Course - V	3	0	0	3		
	Semester	•		III	-		
Course Objective	es: Student will be able						
• To introduce t	the fundamental concepts of Optimization Techniques;						
• To provide th	e concepts of various classical and modern methods of for constr	ained	and u	nconstr	ained		
problems in b	oth single and multivariable.						
• To make the learners aware of the importance of optimizations in real sceneries							
Course Outcome	8:-						
Formulate opt	imization problems						
Understand an	nd apply the concept of optimality criteria for various type of optim	ization	probl	lems;			
Solve various	constrained and unconstrained problems in single variable as well	as mul	ivaria	uble;			
UNIT – I		Lectur	e Hrs:	:9			
Introduction : Engineering Applications of optimization- statement of an optimization problem – Classification of optimization problems. Single Variable Non-Linear Unconstrained Optimization : One dimensional Optimization methods:- Uni- modal function, elimination methods, Fibonacci method, golden section method, interpolation methods – quadratic and cubic interpolation methods.							
UNIT – II		Lectur	e Hrs:	:9			
Multi variable i pattern search met function, steepest	non-linear unconstrained optimization: Direct search method thods – Powell's- Hook -Jeeves, Rosenbrock search methods- grad decent method, Fletcher Reeves method, variable metric method.	– Un ient me	ivaria: ethods	nt metl s, gradio	hod - ent of		
method- Parametr	ic linear programming- Goal Programming Simulation- types of s	imulat	ions-	Applica	ations		
of simulations to i	nventory, queuing and thermal systems						
UNIT – III		Lectur	e Hrs:	:9			
Integer Program algorithm, branch Stochastic Progr	iming- Introduction – formulation – Geometry cutting plane a and bound method camming: Basic concepts of probability theory random varial	lgorith	m – Z	Zero o	r one		
variance, correlati	on, co variance, joint probability distribution- stochastic linear, dyr	amic p	rogra	mming			
UNIT – IV		Lectur	e Hrs:	:9			
Geometric Progr G.P	amming: Polynomials – arithmetic - geometric inequality – uncon	straine	d G.P	- consti	rained		
UNIT – V		Lectur	e Hrs:	:9			
Non Traditional Differences betwee Simple Problems.	Optimization Algorithms: Genetics Algorithm-Working Prince en Genetic Algorithm and Traditional Methods. Simulated Annea Application in production problems.	nciples ling- V	, Sim Vorki	ilarities ng Prin	s and ciple-		

1. Optimization theory and Applications, S.S.Rao, New Age International.

2. Optimization for Engineering Design, Kalyanmoy Deb, PHI

Reference Books:

- 1. Operations Research, S.D.Sharma,
- 2. Operation Research, H.A.Taha ,TMH
- 3. Optimization in operations research, R.LRardin
- 4. Optimization Techniques, Belagundu & Chandraputla, Pearson Asia.
- 5. Optimization Techniques theory and practice, M.C.Joshi, K.M.Moudgalya, Narosa Publications

Course Code	JET PROPULSION & ROCKETRY	L	Т	Р	С		
21D88301b	Program Elective Course - V	3	0	0	3		
	Semester	III					
Course Objective	s: Student will be able to						
• Analyze therm	nodynamics of an aircraft jet engine and calculate the performance	e meas	ures, s	uch as	thrust		
and specific fu	iel consumption in terms of design requirement.						
• Be able to estimate the best possible engine performance as a function of principal design parameters, such as maximum engine temperature, pressure ratio, and flight speed							
• Analyze the internal mechanisms of gas turbine engine components and understand the factors that limit the practical performance of inlate, combustion chembers, and performance.							
Course Outcomes	s:- Student will be able to						
course outcome.	S. Student will be usie to						
• Understand th angles, and dir	e operating characteristics of compressors and turbines in term rection of rotation	s of g	given b	olade sl	hapes,		
• Design a gas the level of sel	turbine engine using the understanding of the relationship betwee lecting the number of spools and stages	en com	ponen	ts, at le	east at		
 Understand th 	he broader context of aircraft propulsion technology, including	g the	enviro	nmenta	al and		
economic issu	es es						
UNIT – I		Lect	ure Hrs	s:9			
Turbo Jet Propu compressors and t	Ision System: Gas turbine cycle analysis – layout of turbo jet e urbines, combustor, blade aerodynamics, engine off design perform	ngine. nance	Turbo analys	o mach is.	inery-		
Flight Performant Principles of Jet engines – Classific and Ramjet engine	Ice: Forces acting on vehicle – Basic relations of motion – multi st Propulsion and Rocketry: Fundamentals of jet propulsion, Rock cation – turbo jet, turbo fan, turbo propulsion, rocket (Solid and L es.	age ve kets ai iquid	whicles nd air l propell	oreathin lant roc	ng jet ckets)		
UNIT – II		Lect	ure Hrs	s:9			
Nozzle: Theory nozzles – aerody thrust, thrust coe criteria, departure	and Characteristics and Parameters: Theory of one dimensional namic choking of nozzles and mass flow through a nozzle – n fficient, Ac / At of a nozzle, Supersonic nozzle shape, non-adapte e from simple analysis – characteristic parameters	conv ozzle ed noz	ergent exhaus zles, s	– dive st veloc ummer	ergent city – field		
1) characteristic parameters 5) not	velocity, 2) specific impulse 3) total impulse 4) relationship be zzle efficiency, combustion efficiency and overall efficiency.	etweer	the c	haracte	eristic		
UNIT – III		Lect	ure Hrs	s:9			
 Aero Thermo Chemistry of The Combustion Products: Review of properties of mixture of gases – Gibbs Dalton laws – Equivalent ratio, enthalpy changes in reactions, heat of reaction and heat of formation – calculation of adiabatic flame temperature and specific impulse – frozen and equilibrium flows. Solid Propulsion System: Solid propellants – classification, homogeneous and heterogeneous propellants, double base propellant compositions and manufacturing methods. Composite propellant oxidizers and binders. Effect of binder on propellant properties. Burning rate and burning rate laws, factors influencing the burning rate, methods of determining burning rates 							
UNIT – IV		Lect	ire Hro	g•Q			

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

Solid propellant rocket engine – internal ballistics, equilibrium motor operation and equilibrium pressure to various parameters. Transient and pseudo equilibrium operation, end burning and burning grains, grain design. Rocket motor hard ware design. Heat

transfer considerations in solid rocket motor design. Ignition system, simple pyro devices.

Liquid Rocket Propulsion System: Liquid propellants – classification, Mono and Bi propellants, Cryogenic and storage propellants, ignition delay of hypergolic propellants, physical and chemical characteristics of liquid propellant. Liquid propellant rocket engine – system layout, pump and pressure feed systems, feed system components. Design of combustion chamber, characteristic length, constructional features, and chamber wall stresses. Heat transfer and cooling aspects. Uncooled engines, injectors – various types, injection patterns, injector characteristics, and atomization and drop size distribution, propellant tank design.

UNIT – V

Lecture Hrs:9

Ramjet and Integral Rocket Ramjet Propulsion System: Fuel rich solid propellants, gross thrust, gross thrust coefficient, combustion efficiency of ramjet engine, air intakes and their classification – critical, super critical and sub-critical operation of air intakes, engine intake matching, classification and comparison of IIRR propulsion systems.

Textbooks:

1. Mechanics and Dynamics of Propulsion, Hill and Peterson

2. Rocket propulsion elements, Sutton

Reference Books:

1. Gas Turbines, Ganesan (TMH)

2. Gas Turbines and Propulsive Systems, Khajuria & Dubey (Dhanpatrai)

3. Rocket propulsion, Bevere

4. Jet propulsion, Nicholas Cumpsty

Course Code	AIR CRAFT AND SPACE PROPULSION	L T P C				
21D88301c	Program Elective Course - V	3	0	0	3	
	Semester	-		III	-	
Course Objectiv	es: Student will be able to					
• Gain insight	on the working principle of rocket engines, different feed system	ms, pi	opella	nts and	l their	
properties an	d dynamics of rockets.					
Course Outcom	es:- Student will be able to					
Understand the working of different types of aircraft and rocket propulsion systems and their performance						
characteristics.						
UNIT – I		Lect	ure Hr	s:9		
GAS DYNAMIC	CS					
Wave motion - C	ompressible fluid flow through variable area devices - Stagnation s	state N	Iach			
Number and its in	nfluence and properties, Isentropic Flow, Rayleigh and Fanno Flow	. Defla	agratic	on and		
Detonation – Nor	mal shock and oblique shock waves.		0			
UNIT – II		Lect	ure Hr	s:9		
THERMODYN	AMICS OF AIRCRAFT ENGINES					
Theory of Aircra	ft propulsion – Thrust – Various efficiencies – Different propulsion	system	ms –			
Turboprop – Ran	1 Jet – Turbojet, Turbojet with after burner, Turbo fan and Turbo sh	naft. V	ariable	e thrust-	_	
nozzles – vector	control.					
UNIT – III		Lect	ure Hr	s:9		
PERFORMANO	E CHARACTERISTICS OF AIRCRAFT ENGINES					
Engine - Aircraft	matching – Design of inlets and nozzles – Performance characteris	tics of	Rami	et, Turt	pojet,	
Scramjet and Tur	bofan engines.		5		5 /	
UNIT – IV		Lect	ure Hr	s:9		
ROCKET PRO	PULSION					
Theory of rocket	propulsion – Rocket equations – Escape and Orbital velocity – Mu	lti-stag	ging of	Ē		
Rockets – Space	missions – Performance characteristics – Losses and efficiencies	,	0			
UNIT – V		Lect	ure Hr	s:9		
ROCKET THR	UST CHAMBER					
Combustion in sc	lid and liquid propellant classification – rockets of propellants and	Prope	llant			
Injection systems	– Non-equilibrium expansion and supersonic combustion – Propel	lant fe	ed svs	tems –		
Reaction Control	Systems - Rocket heat transfer.			• • • • • • •		
Textbooks:						
1 Philip G Hill	and Carl R Peterson Mechanics and Thermodynamics of Propuls	ion S	econd			
2 Edition Add	tion – Wesley Publishing Company New York 2009	1011, 0	ccona			
3. Zucrow N.J.	Principles of Jet Propulsion and Gas Turbines. John Wiley and Son	s New	York	1970		
Reference Books			2 51 1	,		
2000 0100 2000M						
1. Zucrow N.J. 1975.	Aircraft and Missile Propulsion, Vol. I and Vol. II, John Wiley a	and So	ons Inc	c, New	York,	
2. S. M.Yahya,	Fundamentals of Compressible Flow. Third edition, New Age Inter	rnatior	al Pvt	Ltd, 20	003.	
3. Bonney E.A.	Zucrow N.J. Principles of Guided Missile Design, Van Nostranc C	o., 19	56.			

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

AUDIT COURSE-I

Course Code	ENGLISH FOR RESEARCH PAPER WRITING	L	Τ	P	С	
21DAC101a		2	0	0	0	
	Semeste	r		Ι		
Course Objectiv	es: This course will enable students:					
Understa	nd the essentials of writing skills and their level of readability					
Learn ab	out what to write in each section					
• Ensure q	ualitative presentation with linguistic accuracy					
Course Outcome	es (CO): Student will be able to					
Understa	nd the significance of writing skills and the level of readability					
Analyze	and write title, abstract, different sections in research paper					
Develop	the skills needed while writing a research paper					
UNIT - I		Lectur	e Hrs	:10		
10verview of a F	Research Paper- Planning and Preparation- Word Order- Useful F	hrases	- Br	eakin	g	
up Long Sentence	es-Structuring Paragraphs and Sentences-Being Concise and Ren	noving	Red	unda	ncy	
-Avoiding Ambig	guity					
UNIT - II	NIT - II Lecture Hrs:10					
Essential Compo	nents of a Research Paper- Abstracts- Building Hypothesis-Rese	earch P	roble	em -		
Highlight Finding	gs- Hedging and Criticizing, Paraphrasing and Plagiarism, Cauter	rizatio	1			
UNIT - III		Lectur	e Hrs	:10		
Introducing Revi	ew of the Literature – Methodology - Analysis of the Data-Findin	ngs - D	liscus	ssion	-	
Conclusions-Rec	ommendations.					
UNIT - IV		Lee	cture	Hrs:)	
Key skills needed	f for writing a Title, Abstract, and Introduction	T		TT (
UNIT - V		Lee	cture	Hrs:	J	
Appropriate lang	uage to formulate Methodology, incorporate Results, put forth A	rgume	nts ai	nd dra	aw	
Conclusions						
Suggested Kead	ng D (2006) Whiting for Spigner, Vola University Drass (available)	n Caa	ala T	Doole	-)	
1. Goldbort Modal C	K (2000) writing for Science, Tale University Press (available (gie E	DOORS	<i>s</i>)	
2 Day P(2)	006) How to Write and Publish a Scientific Paper, Combridge U	nivorai	ty Dr	000		
2. Day K (2 3 Highman	2. Day K (2000) now to write and Publish a Scientific Paper, Cambridge University Press 3. Highman N (1008), Handbook of Writing for the Mathematical Sciences, SIAM					
5. Trighman N (1996), nanubook of writing for the Mathematical Sciences, SIAM. Highman'shook						
4. Adrian W	Vallwork, English for Writing Research Papers, Springer New Y	ork Do	ordrea	cht		
Heidelbe	rg London, 2011					

Course Code	DISA	STED MANACEMENT	r.	L	Т	Р	С		
21DAC101b	DISA		L	2	0	0	0		
			Semester]	[
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									
Course Objecti	ves: This course wil	l enable students:							
 Learn to and hun Criticall Multiple Develop 	 Learn to demonstrate critical understanding of key concepts in disaster risk reduction and humanitarian response. Critically evaluatedisasterriskreduction and humanitarian response policy and practice from Multiple perspectives. Developanunderstandingofstandardsofhumanitarianresponseandpracticalrelevanceinspecific types 								
of disast	ers and conflict situa	tions							
Criticall program	yunderstandthestren ming in different co	gthsandweaknessesofdisas antries, particularly their l	stermanagement	tapproa	ches,pla untries t	nninga hey wo	nd rk in		
UNIT - I									
Introduction: Disaster:Definition,FactorsandSignificance;DifferenceBetweenHazardandDisaster;Naturaland Manmade Disasters: Difference, Nature, Types and Magnitude. Disaster Prone Areas in India: Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post- Disaster Diseases and Epidemics UNIT - II Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes,Volcanisms,Cyclones,Tsunamis,Floods,DroughtsandFamines,Landslides and Avalanches,									
Man-made disas	ter: Nuclear Reactor	Meltdown, Industrial Ac	cidents, Oil Slic	ks and s	Spills, C	Jutbreak	is of		
Disease and Epi	lemics, War and Coi	iflicts.							
UNII - III Disaster Drenova	duana and Managana								
Preparedness: M of Remote Sensi Community Pre	onitoring of Phenom ng, Data from Meteo paredness.	ena Triggering ADisaster rological and Other Ager	or Hazard; Eval ncies, Media Re	uation of eports: (of Risk: Governr	Applica nental a	ation Ind		
UNIT - IV									
Risk Assessmen Concept and Ele TechniquesofRis in Risk Assessm	Disaster Risk: ments, Disaster Risk kAssessment,Global ent. Strategies for Su	Reduction, Global and Na Co-OperationinRiskAsses rvival.	ational Disaster ssmentand Warr	Risk Si iing, Pe	tuation. ople's F	Participa	ition		
UNIT - V									
Disaster Mitigat	on:								
Meaning,Concep	otandStrategiesofDisa	sterMitigation,Emerging	TrendsInMitigat	ion.Str	ıctural				
Mitigationand N	on-Structural Mitiga	tion, Programs of Disaster	r Mitigation in I	ndia.					
Suggested Read	ing								
1. R.Nishit 2 "'New I	h,SinghAK,"Disaste loval book	rManagementinIndia:Pers	spectives, issuesa	andstrat	egies				
Compar	vSahni.PardeenEt.	Al.(Eds.),"DisasterMitigat	tionExperiences	AndRe	flection	s".Prent	ticeHa		
ll OfInd	a, New Delhi.	(), = -=ugu	r			,- ••••			
3. GoelS.L	.,DisasterAdministra	tionAndManagementTex	tAndCaseStudie	es",Dee	p&Deep)			
Publicat	ion Pvt. Ltd., New D	elhi			-				

Course Code	SANSKRIT	FOR TECHNICAL	KNOWLEDGE	L	Т	Р	С
21DAC101c				2	0	0	0
			Semester	Ι			
Course Objective	es: This course	will enable students	:				
• To get a v	working knowle	dge in illustrious Sans	skrit, the scientific lang	guage i	n the wo	orld	
Learning of Sanskrit to improve brain functioning							
Learning of Sanskrittodevelop the logic inmathematics, science & other subjects enhancing the memory							
power The engin	peering scholars	equipped with Sanski	rit will be able to explo	ore the	huge		
Knowledge	ge from ancient	iterature	in will be able to explo		nuge		
Course Outcome	s (CO). Studen	t will be able to					
Understat	nding basic Sans	skrit language					
Ancient S	anskrit literatur	e about science & tech	nology can be underst	hoo			
Being a la	ogical language	will help to develop h	ogic in students	000			
UNIT - I							
Alphabets in Sans	skrit.						
Dast/Present/Futur	ra Tansa Simple	Sentences					
	ie rense, simple	e Semences					
Order Introductio	on of roots						
				1			
	. 1	1 • . • .					
Technical informa	ation about Sans	krit Literature					
UNII - V	ta of Engineerin	- Electrical Machania	al Angleitagtung Math	amatia	~		
Technical concept	ts of Engineering	g-Electrical, Mechanic	cal, Architecture, Math	ematic	S		
Suggested Readi	ng						
1."Abhyaspustaka	am" –Dr. Vishwa	as, Sanskrit-Bharti Pu	blication, New Delhi				
2."Teach Yourse	elf Sanskrit" H	Prathama Deeksha-	VempatiKutumbshas	tri, Ras	htriyaSa	anskrit	
Sansthanam, New	Delhi Publicati	on	_				
3."India's Gloriou	us ScientificTrac	lition" Suresh Soni, C	Cean books (P) Ltd.,N	lew De	lhi		

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

AUDIT COURSE-II

Course Code	PEDAGOGY STUDIES	L	Т	Р	С
21DAC201a		2	0	0	0
	Semester	II			
Course Objectives	: This course will enable students:				
Reviewexis	tingevidenceonthereviewtopictoinformprogrammedesigna	ndpolic	y makir	ng unde	rtaken
by the DfID	, other agencies and researchers.				
Identify crit	ical evidence gaps to guide the development.				
Course Outcomes	(CO): Student will be able to				
 Students with the second second	ll be able to understand:				
• Whatpedage countries?	ogicalpracticesarebeingusedbyteachersinformalandinforma	alclassr	ooms in	develo	ping
• What is the	evidence on the effectiveness of these pedagogical practic	es, in v	vhat		
• conditions,	and with what population of learners?				
Howcantead	chereducation(curriculumandpracticum)andtheschoolcurrie	culuma	nd guida	ance ma	iterials
best suppor	t effective pedagogy?				
UNIT - I		. 10		1 1	
Introduction and Me	thodology: Aims and rationale, Policy back ground, Conc	eptual f	rame wo	ork and	
Overview of method	es offearning, Curriculum, Leachereducation. Conceptualitat	nework	,Resear	ch quest	lions.
Thematic overview:	Pedagogical practices are being used by teachers in forma	land i	nformal	classro	oms
in developing count	ries. Curriculum, Teacher education.	ii uiite i	in or mar	ciussio	onis
Evidence on theeffe	ctivenessofpedagogicalpractices Methodologyfortheindent	hstage	nuality a	issessm	en t of
included studies. Ho	w can teacher education (curriculumandpracticum) and the	escho cu	irricului	n and	011 0 01
guidance materials l	best support effective pedagogy? Theory of change. Streng	th and r	nature of	f th bod	y of
evidence for effectiv	ve pedagogical practices. Pedagogic theory and pedagogical	al appro	aches. 7	Teachers	s'
attitudes and beliefs	and Pedagogic strategies.				
UNIT - IV					
Professional develop	pment: alignment with classroom practices and follow-up s	support.	Peer su	ipport,	
Support from the he	ad				
teacherandthecomm	unity.Curriculumandassessment,Barrierstolearning:limited	resourc	esand la	arge cla	ŝS
SIZES					
UNII - V Desearcheansandfut	uradiractions: Pasagraphasian Contaxts Dadagagy Tagahar	ducati	n		
Curriculum and asse	ureunections. Research design, Contexts, redagogy, reacher	cuucan	л і ,		
Suggested Reading					
1. AckersI.Ha	rdmanF(2001)ClassroominteractioninKenvanprimaryscho	ols.Cor	npare.		
31 (2): 245-	261.	015,001			
2. AgrawalM(2004)Curricularreforminschools:Theimportanceofevaluati	ion,Jou	nalof		
3. Curriculum	Studies, 36 (3): 361-379.				
4. Akyeampor	ngK(2003) Teacher training in Ghana - does it count? Mul-	ti-site to	eachered	lucation	1
research pro	oject (MUSTER) country report 1. London: DFID.				
5. Akyeampor	ng K, LussierK, PryorJ, Westbrook J (2013)Improving tead	ching a	nd learn	ing of b	asic
maths and r	eading in Africa: Does teacherpreparation count?Internation	onal Joi	ırnal Ec	lucation	ıal
Developme	nt, 55 (5): $2/2-282$.			nootion	
Oxford and	Boston: Blackwell	s in prii	nai y ed	ucation	

Chavan M (2003)ReadIndia: A mass scale, rapid, 'learning to read'campaign.

7. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Code	STDE	SSMANIACEMENTE DV VOCA	CEMENT BY YOCA		Т	Р	С		
21DAC201b	SIKE	SSMANAGEMENT DI TOGA		2	0	0	0		
		Se	emester		Ι	Ι			
Course Objecti	ves: This course	will enable students:							
To achie	• To achieve overall health of body and mind								
To over	• To overcome stres								
Course Outcom	nes (CO): Studer	t will be able to							
Develop	healthy mind in	a healthy body thus improving socia	al health a	also					
Improve	efficiency								
UNIT - I									
Definitions of Ei	ight parts of yog.(Ashtanga)							
UNIT - II									
Yam and Niyam	l .								
UNIT - III									
Do`sand Don't's	sin life.								
i) Ahinsa, satya, a	stheya,bramhach	aryaand aparigrahaii) Shaucha,santo	sh,tapa,sv	wadhya	y,ishwa	rpranidł	nan		
UNIT - IV									
Asan and Pranay	/am								
UNIT - V									
i)Variousyogpos	sesand theirbenefi	tsformind &body							
ii)Regularization	nofbreathingtechn	iques and its effects-Types ofpranay	am						
Suggested Read	ling								
1.'Yogic Asanas	s forGroupTarinin	g-Part-I": Janardan SwamiYogabhy	vasiMand	lal, Nag	pur				
2."Rajayogaor	conquering the	Internal Nature" by Swami Viv	ekananda	a, Adv	aita				
Ashrama (Public	cation Departmen	t), Kolkata							

Course Code	PERSONAL	LITY DEVELOPMENT THROUGHLIFE	L	L T P				
21DAC201c		ENLIGHTENMENTSKILLS	2	0	0	0		
	<u>.</u>	Semeste	r	I	Ι			
Course Objecti	ives: This cour	se will enable students:						
To learn	n to achieve the	e highest goal happily						
To beco	• To become a person with stable mind, pleasing personality and determination							
To awal	To awaken wisdom in students							
Course Outcon	Course Outcomes (CO): Student will be able to							
Studyof	Shrimad-Bhag	wad-Geetawillhelpthestudentindevelopinghis	personal	ityand a	chieve the	he		
highest	goal in life		-					
• The per	son who has st	udied Geetawilllead the nation and mankind	o peace	and pros	perity			
Study of	f Neetishatakaı	m will help in developing versatile personalit	y of stud	ents				
UNIT - I								
Neetisatakam- H	Holistic develor	oment of personality						
Verses-19,20,21	,22(wisdom)							
Verses-29,31,32	(pride &herois	m)						
Verses-26,28,63	,65(virtue)							
UNIT - II								
Neetisatakam- H	Iolistic develop	oment of personality						
Verses-52,53,59	(dont's)							
Verses-71,73,75	,78(do's)							
UNIT - III								
Approach to day	y to day work a	nd duties.						
ShrimadBhagwa	adGeeta:Chapte	er2-Verses41,47,48,						
Chapter3-Verses	s13,21,27,35,C	hapter6-Verses5,13,17,23,35,						
Chapter18-Verse	es45,46,48.							
UNIT - IV								
Statements of ba	asic knowledge							
ShrimadBhagwa	adGeeta:Chapte	er2-Verses 56,62,68						
Chapter12 -Vers	ses13,14,15,16,	17,18						
Personality of R	olemodel. Shri	mad Bhagwad Geeta:						
UNIT - V								
Chapter2-Verses	s 17, Chapter 3-	Verses36,37,42,						
Chapter4-Verses	s18,38,39							
Chapter18–Ver	ses37,38,63							
Suggested Read	ding							
1."SrimadBhaga	avadGita"bySw	vamiSwarupanandaAdvaitaAshram(Publication)	onDepart	ment),				
Kolkata								
2.Bhartrihari'sT	hree Satakam	(Niti-sringar-vairagya) by P.Gopinath, Ras	htriyaSa	nskrit				
Sansthanam	New Delhi.							

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

OPEN ELECTIVE

Course Code	BUSINESS ANALYTICS	L	Т	P	С
21DOE301c		3	0	0	3
	Semester			III	
Course Objectives	•				
• The main o	bjective of this course is to give the student a comprehensive under	rstand	ding	of	
 business an 	alytics methods.				
Course Outcomes	(CO): Student will be able to				
• Students w	ill demonstrate knowledge of data analytics.				
• Students w	ill demonstrate the ability of think critically in making decisions ba	used o	on		
 data and de 	ep analytics.				
• Students w	ill demonstrate the ability to use technical skills in predicative and				
 prescriptive 	e modeling to support business decision-making.				
Students w	ill demonstrate the ability to translate data into clear, actionable ins	ights			
UNIT - I		Lec	ture	Hrs:	
Business Analysis:	Overview of Business Analysis, Overview of Requirements, Role	of the	e Bus	siness	
Analyst.					
Stakeholders: the pr	roject team, management, and the front line, Handling Stakeholder	Conf	flicts		
UNIT - II		Lec	ture	Hrs:	
Life Cycles: System	ns Development Life Cycles, Project Life Cycles, Product Life Cyc	eles, l	Requ	ireme	ent
Life Cycles.					
UNIT - III		Lec	ture	Hrs:	
Forming Requireme	ents: Overview of Requirements, Attributes of Good Requirements	, Typ	bes of	f	
Requirements, Requ	uirement Sources, Gathering Requirements from Stakeholders, Cor	nmoi	n Ree	quirer	nents
Documents.Transfo	orming Requirements: Stakeholder Needs Analysis, Decomposition	Ana	lysis	,	
Additive/Subtractiv	e Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts	s, Swi	im L	ane	
Flowcharts, Entity-	Relationship Diagrams, State-Transition Diagrams, Data Flow Dia	gram	is, Us	se Cas	se
Modeling, Business	s Process Modeling				
UNIT - IV		Lec	ture	Hrs:	
Finalizing Requirer	nents: Presenting Requirements, Socializing Requirements and Gai	ining	Acc	eptan	ce,
Prioritizing Require	ements. Managing Requirements Assets: Change Control, Requirer	nents	s Too	ols	
UNIT - V		Lec	ture	Hrs:	
Recent Trands in: E	Embedded and colleborative business intelligence, Visual data reco	very,	Data	a	
Storytelling and Da	ta Journalism.	•			
Textbooks:					
1. Business Analysi	is by James Cadle et al.				
2. Project Managen	nent: The Managerial Process by Erik Larson and, Clifford Gray				
Reference Books:					
1. Business ar	nalytics Principles, Concepts, and Applications by Marc J. Schniede	erjan	s, Da	ıra G .	
Schniederja	ans, Christopher M. Starkey, Pearson FT Press.				
2. Business A	nalytics by James Evans, persons Education.				

Course Code	INTERNET OF THINGS (IOT)	L	Т	P	С				
21DOE301g		3	-	-	3				
	Semester		Ι	II					
Course Objectives: Student will be able									
To study fundamental concepts of IoT									
To unders	stand roles of sensors in IoT								
To Learn	different protocols used for IoT design								
• To be fan	niliar with data handling and analytics tools in IoT								
• Appreciate the role of big data, cloud computing and data analytics in a typical IoT system									
Course Outcome	s (CO): Student will be able to								
Understan	nd the various concepts, terminologies and architecture of IoT sys	tems.							
Use sense	• Use sensors and actuators for design of IoT.								
Understan	nd and apply various protocols for design of IoT systems								
Use vario	us techniques of data storage and analytics in IoT								
Understar	nd various applications of IoT								
Understar	nd APIs to connect IoT related technologies								
UNIT – I		Lec	ture I	Hrs:0	9				
Fundamentals of	IoT: Introduction, Definitions & Characteristics of IoT, IoT Archi	tectu	res, I	Physio	cal				
& Logical Design	of IoT, Enabling Technologies in IoT, History of IoT, About Thi	ngs i	n IoT	, The	;				
Identifiers in IoT,	About the Internet in IoT, IoT frameworks, IoT and M2M								
UNIT – II		Lec	ture I	Hrs: ()9				
Sensors Networks	s : Definition, Types of Sensors, Types of Actuators, Examples an	d Wo	orking	g, Io7	ſ				
Development Boa	rds: Arduino IDE and Board Types, RaspberriPi Development Ki	it, RF	TD P	rincij	ples				
and components,	Wireless Sensor Networks: History and Context, The node, Conn	ecting	g nod	es,					
Networking Node	s, WSN and IoT.	_							
UNIT – III		Lec	ture I	Hrs: ()9				
Wireless Technologies for IoT: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC,									
Z-Wave, BLE, Bacnet, Modbus.									
IP Based Protocol	Is for IoT IPv6, 6LowPAN, RPL, REST, AMPQ, CoAP, MQTT.	Edge	conn	ectiv	ıty				
and protocols		T		T (20				
		Lec	ture I	Hrs: ()9				
Data Handling& Analytics: Introduction, Bigdata, Types of data, Characteristics of Big data, Data									
handling Technologies, Flow of data, Data acquisition, Data Storage, Introduction to Hadoop.									
Introduction to da	ta Analytics, Types of Data analytics, Local Analytics, Cloud ana	lytics	s and						
applications		τ		T (10				
		Lec	ture I	Hrs: (19				
Applications of Ic	1: Home Automation, Smart Cities, Energy, Retail Management,	Log	istics	,					
Agriculture, Health and Lifestyle, Industrial IoT, Legal challenges, IoT design Ethics, IoT in									
Environmental Pr	otection.								
1 extbooks:			070	1					
1.Hakima Chaouchi, — "The Internet of Things Connecting Objects to the Web" ISBN : 978-1-									
84821-140-7, Wiley Publications									
2. Olivier Hersent, David Boswarthick, and Omar Elloumi, — "The Internet of Things: Key									
Applications and Protocols, wheyPublications 2 Vijev Medicetti and ArchdeenPahee "Internet of Things (A Hands on Approach)" ^{1st} Edition									
VPT 2014									
VI 1, 2014. 4 I Biron and I Follett "Foundational Flements of an IoT Solution" O'Pailly Madia 2016									
5 Keysight Technologies "The Internet of Things' Enabling Technologies and Solutions for Design									
and Test" Applie	ation Note 2016	110118	101 1	Jesig	,11				
Reference Books:									
1 Daniel Minoli — "Building the Internet of Things with IPv6 and MIPv6. The Evolving World of									
	Bunding the internet of rinings with it vo and with vo. The Ev		5 110	n u U	1				

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

M2M Communications", ISBN: 978-1-118-47347-4, Willy Publication 2.Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc17_cs22/course

http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

ENGINEERING & TECHNOLOGY PG (M.TECH.) COURSES PROPOSED COURSE STRUCTURE

Course Code	MECHATRONICS	L	Т	P	C				
21DOE301h		3	0	0	3				
	Semester		<u> </u>	II					
Course Objecti	ves: Student will be able								
Course Objecti	ves. Student will be able								
To study	y fundamental concepts of Signal condition								
• To unde	rstand the concepts of precision mechanical systems								
• To Lear	n different electronic interface subsystems								
• To be fa	miliar with microcontrollers overview.								
To unde	rstand the concepts of programmable logic controllers								
Course Outcom	nes (CO): Student will be able to								
• Underst	and the various concepts, terminologies of Signal condition								
• Underst	and the basics electronic interface subsystems								
• Underst	and and apply various precision mechanical systems								
• Underst	Understand various applications of microcontrollers overview								
Underst	and the controlling of programmable logic and programmable mo	tion.							
UNIT – I		Lec	ture I	Hrs:0	9				
INTRODUCTI	ON • Definition – Trends - Control Methods: Standalone PC	Based	1 (R	eal T	ime				
Operating Syste	ms Graphical User Interface Simulation) - Applications: SPM	Robe	t CN	NC F	MS				
CIM.		11000	, ei	, 1	,				
SIGNAL CONDITIONING : Introduction – Hardware - Digital I/O, Analog input – ADC, resolution , speed channels Filtering Noise using passive components – Resistors, capacitors -									
Amplifying sign notch filtering.	als using OP amps – Software - Digital Signal Processing – Lov	v pas	s, hi	igh p	ass ,				
UNIT – II		Lec	ture I	Hrs: ()9				
PRECISION MECHANICAL SYSTEMS : Pneumatic Actuation Systems - Electro-pneumatic Actuation Systems - Hydraulic Actuation Systems - Electro-hydraulic Actuation Systems - Timing Belts – Ball Screw and Nut - Linear Motion Guides - Linear Bearings - Harmonic Transmission - Bearings- Motor / Drive Selection.									
UNIT – III		Lec	ture I	Hrs: ()9				
ELECTRONIC Actuator interfa schemes – circu - Bipolar transis	C INTERFACE SUBSYSTEMS : TTL, CMOS interfacing - S cing – solenoids, motors Isoation schemes- opto coupling, buffe it breakers, over current sensing, resetable fuses, thermal dissipat tors / mosfets	enson er IC tion -	inte 's - I Pow	rfacin Protec er Su	ng – ction pply				
ELECTROMECHANICAL DRIVES : Relays and Solenoids - Stepper Motors - DC brushed motors - DC brushless motors - DC servo motors - 4-quadrant servo drives , PWM's - Pulse Width Modulation - Variable Frequency Drives, Vector Drives - Drive System load calculation									
UNIT – IV		Lec	ture I	Hrs: ()9				
MICROCONT	ROLLERS OVERVIEW: 8051 Microcontroller, micro pro	ocesso	or st	ructu	re -				

DigitalInterfacing - Analog Interfacing - Digital to Analog Convertors - Analog to Digital Convertors - Applications. Programming –Assembly , C (LED Blinking , Voltage measurement using ADC).

UNIT - V		Lecture Hrs: 09
PROGRAMMA	BLE LOGIC CONTROLLERS : Basic Structure - Programmin	ng : Ladder diagram
-Timers, Internal	Relays and Counters - Shift Registers - Master and Jump Control	ls - Data Handling -
Analog input / out	put - PLC Selection - Application.	

PROGRAMMABLE MOTION CONTROLLERS : Introduction - System Transfer Function – Laplace transform and its application in analysing differential equation of a control system - Feedback Devices :Position , Velocity Sensors - Optical Incremental encoders - Proximity Sensors : Inductive , Capacitive ,

Textbooks:

A text book of Mechatronics by Er.R.K. RAJPUT ., S.CHAND publications
 A text book of Mechatronics by Nitalgour Premchand Mahalik ., McGraw Hill publications

Reference Books:

1. A text book of Mechatronics by W.Bolton ., Pearson Publications