

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

$\boldsymbol{SEMESTER-I}$

S. No.	Course	Course Name	Category			week	Credits
	codes			L	T	P	
1.	21D35101	Theory of Elasticity	PC	3	0	0	3
2.	21D20101	Advanced Structural Analysis	PC	3	0	0	3
3.	21D35203b 21D21103a 21DBS105	Program Elective - I Theory and Analysis of Plates and Shells Advanced Concrete Technology Advanced Mathematical Methods	PE	3	0	0	3
4.	21D35104b 21D20103a 21D20103b	Program Elective – II Design of Prestressed Concrete Maintenance and Rehabilitation of Structures Design of Bridges	PE	3	0	0	3
5.	21D35206	Advanced Concrete Laboratory	PC	0	0	4	2
6.	21D35106	Advanced Structural Engineering Laboratory	PC	0	0	4	2
7.	21DRM101	Research Methodology and IPR	MC	2	0	0	2
8.	21DAC101a 21DAC101b 21DAC101c	Audit Course – I English for Research paper writing Disaster Management Sanskrit for Technical Knowledge	AC	2	0	0	0
	•	Total					18

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

SEMESTER - II

S.No.	Course	Course Name	Category	Hou	ırs pei	week	Credit
	codes			L	T	P	S
1.	21D35201	Structural Dynamics	PC	3	0	0	3
2.	21D20201	Finite Element Methods for Structural Engineering	PC	3	0	0	3
3.	21D20202a 21D20202b 21D20202c	Program Elective – III Design of Reinforced Concrete Foundations Experimental Stress Analysis Stability of Structures	PE	3	0	0	3
4.	21D20203a 21D20203b 21D20203c	Program Elective – IV Advanced Steel Design Fracture Mechanics Advanced Reinforced Concrete Design	PE	3	0	0	3
5.	21D20204	Computer Aided Design Laboratory	PC	0	0	4	2
6.	21D20205	Advanced Structural Design Laboratory	PC	0	0	4	2
7.	21D20206	Technical seminar	PR	0	0	4	2
8.	21DAC201a 21DAC201b 21DAC201c	Audit Course – II Pedagogy Studies Stress Management for Yoga Personality Development through Life Enlightenment Skills	AC	2	0	0	0
	•	Total	•				18

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

SEMSTER - III

S.No.	Course	Course Name	Category	Hours per		r	Credits
	codes			L	T	P	
1.	21D35301a 21D20301a 21D20301b	Program Elective – V Earthquake Resistant Design of Buildings Low-Cost Housing Techniques Building Construction Management	PE	3	0	0	3
2.	21DOE301a 21DOE301b 21DOE301c	Open Elective Cost Management of Engineering Project Industrial Safety Business Analytics	OE	3	0	0	3
3.	21D20302	Dissertation Phase – I	PR	0	0	20	10
4.	21D203013	Co-curricular Activities					2
	Total						18

SEMESTER - IV

S.No.	Course	Course Name	Category	Hours per		Credits	
	codes			L	T	P	
1.	21D20401	Dissertation Phase – II	PR	0	0	32	16
		Total					16

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code		L	Т	P	C
21D35101	THEORY of ELASTICITY	3	0	0	3
	Semester			[
			-		
Course Objectiv	ves: This Course Will Enable Students:				
To make	students understand the principles of elasticity.				
	iarize students with basic equations of elasticity.				
	se students to two dimensional problems in Cartesian and polar coo	rdina	ites.		
	ke students understand the principle of torsion of prismatic bars.				
	es (CO): Student will be able to				
	stic analysis to study the fracture mechanics.				
	ear elasticity in the design and analysis of structures such as beams,	plate	es, sł	iells a	and
sandwich co					
	per elasticity to determine the response of elastomer-based objects.				
	ne structural sections subjected to torsion.			10	
UNIT - I	,	ectu	re Hi	s:10	
	ON TO PLANE STRESS and PLANE STRAIN ANALYSIS:			~ .	
	tion for Forces and Stresses-Components of Stresses -Compor				
	Plane Stress-Plane Strain-Differential Equations of Equilib	rium	- B	ound	ary
	patibility Equations-Stress Function-Boundary Conditions.				
UNIT - II		cture	Hrs	:10	
	IONAL PROBLEMS in RECTANGULAR COORDINATES:		ъ	1.	c
	lynomials-Saint Venant's Principle-Determination of Displacen				of
UNIT - III	pplication of Fourier Series for Two Dimensional Problems - Grav		e Hrs		
	IONAL PROBLEMS in POLAR COORDINATES:	cture	; IIIS	:10	
	n in Polar Co-Ordinates - Stress Distribution Symmetrical Abou	t An	Λv	ic D	hira
	yed Bars- Strain Components in Polar Coordinates-Displacements				
	ions-Simple Symmetric and Asymmetric Problems-General S				
	oblem in Polar Coordinates-Application of The General S				
	oblem in Polar Coordinates-Application of The General So				
Coordinates.	5014111 II 101111 COOLUMNIOO 11pp 1141110 O 1110 O 1110 O	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,101
UNIT - IV		Lec	ture	Hrs:	9
	STRESS and STRAIN in THREE DIMENSIONS: Principle Stre				
Stress-Director		Shea		Stress	
Homogeneous D	eformation-Principle Axis of Strain Rotation.				
	ems: Balance Laws - Differential Equations of Equilibrium	- C	ondi	ions	of
Compatibility -	Determination of Displacement-Equations of Equilibrium	in	Te	rms	of
Displacements-P	rinciple of Superposition-Uniqueness of Solution –The Reciprocal	The c	rem.		
UNIT - V		Lec	ture	Hrs:9	9
	RISMATIC BARS:				
Torsion of Pr	rismatic Bars- Elliptical Cross Section-Other Elementary Sol	ution	s-M	embr	ane

Torsion of Prismatic Bars- Elliptical Cross Section-Other Elementary Solutions-Membrane Analogy-Torsion of Rectangular Bars-Solution of Torsional Problems by Energy Method-Use of Soap Films in Solving Torsional Problems-Hydra Dynamical Analogies-Torsion of Shafts, Tubes and Bars.

Textbooks:

- 1. Theory of Elasticity and Plasticity by Timoshenko, S., MC Graw Hill Book company.
- 2. Advanced Strength of materials by Papoov, MC Graw Hill Book company.
- 3. Theory of Elasticity and Plasticity by Sadhu Singh. Khanna Publishers.

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 1. Plasticity for structural Engineers- Chen, W.F. and Han, D.J., Springer Verlag, New York.
- 2. Plasticity theory, Lubliner, J., Mac Millan Publishing Co., New York.
- 3. Foundations of Solid Mechanics by Y.C.Fung, PHI Publications.
- 4. Advanced Mechanics of Solids by L.S. Srinath, Tata MC Graw Hill Book company.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code 21D20101	ADVANCED STRUCTURAL ANALYSIS	L 3	T 0	P 0	C 3
21D20101	Semester	3	U		3
	Semester			L	
Course Objectiv	ves: This Course Will Enable Students:				
	d the static and kinematic indeterminacy of the structures				
To understan	d the concepts of matrix methods of analysis of structures				
	d the analysis of continuous beams.				
To understan	d the analysis of rigid and pin jointed frames				
	es (CO): Student will be able to				
Distingui	ish determinate and indeterminate structures.				
 Identify 	the method of analysis for indeterminate structures.				
Apply m	atrix methods of analysis for continuous beams.				
Apply m	atrix methods of analysis for rigid and pin jointed frames.				
UNIT - I		Lec	ture	Hrs:	
	natrix methods of analysis - statical indeterminacy and kinematica				
	om - coordinate system - structure idealization stiffness and flex				
	nt stiffness equations - elements flexibility equations - mixed force	ce - d	lispl	acem	ent
	uss element, beam element and torsional element.				
	of coordinates - element stiffness matrix - and load vector -	local	and	d glo	bal
coordinates.		-			
UNIT - II		Lec			1
	ffness matrix from element stiffness matrix - direct stiffness red matrix - semi bandwidth - assembly by direct stiffness matrix me			gene	erai
UNIT - III		Lec	ture	Hrs:	
Analysis of plane	e truss - continuous beams with and without settlement - plane fran	me in	clud	ing s	side
sway single store	ey, single – bay and gable frame by flexibility method using system	appro	oach		
UNIT - IV		Lec			
	e truss - continuous beams with and without settlement - plane fram				
	gable frames by stiffness methods, single bay – two storey, two bay				y.
UNIT - V		Lec			
Special analysis	procedures - static condensation and sub structuring - initial and the	ermal	stre	sses.	
Textbooks:					
	Analysis of Frames structures by William Weaver J.R and James	es M	[.Ge	re, C	BS
publicati					
	d Structural Analysis by Ashok.K.Jain, New Channel Brothers.				
	nethod of S.A by Pandit & Gupta				
Reference Book					
I .	tructural Analysis by Madhu B. Kanchi.				
	Methods of Structural Analysis by J.Meek.				
	al Analysis by Ghali and Neyveli.				
4. Structura	ll Analysis by Devdas Menon, Narosa Publishing Housing Pvt Ltd.				

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	THEORY and ANALYSIS of	L	T	P	C
21D35203b	PLATES and SHELLS (PE-I)	3	0	0	3
	Semester			Ī	
Course Objectiv	ves: This Course Will Enable Students:				
 Introduce 	with concept of plate theory, the behaviour and analysis				
	ge about classification of shell surfaces				
	e the plate with different boundary conditions				
 To unders 	tand the classical theory oh shells based on the kirchoff-love assum	ptio	ns.		
Course Outcom	es (CO): Student will be able to				
Assess the	strength of plate panels under point, linearly varying and uniformly	dist	ribut	ed lo	ads
 Analyze p 	plates under different boundary conditions by various classic	al 1	neth	ods	and
	ted methods				
 Familiar w 	ith classification of shells and classical shell theories and apply the	m ir	n eng	inee	ring
design	***				
	single curved shells, doubly curves shells and cylindrical shells				
UNIT - I		Lect	ure F	Irs:10	0
Introduction: S ₁	pace Curves, Surfaces, Shell Co-ordinates, Strain Displacement Rel	atio	1S,		
	Shell Theory, Displacement Field Approximations, Stress Result			ıatioı	a of
	g Principle of Virtual Work, Boundary Conditions.	,	1		
UNIT - II	<u> </u>	Lect	ure F	Irs:10	0
	Theory of Thin Rectangular Plates: Assumptions – Derivat				
	ion for thin plates – Boundary conditions – simply supported		late		nder
	Navier solution – Application to different cases – Levy's sol				
	ons subjected to different loadings like uniform and hydrostati				
UNIT - III			ure F		0
	Differential Equation for symmetrical bending of Laterally loaded				
	d circular plates –circular plate concentrically loaded – circular				
center		1			
UNIT - IV		Lec	cture	Hrs:	9
	nal behaviour – examples – structural behaviour of shells classific				
	rious methods of analysis of shells – merits and demerits of each				
Membrane equat					•
	iilibrium: Derivation of stress resultants – cylindrical shells – Flu	igge	s sin	nulati	ions
equations.	-y	00			
UNIT - V		Lea	cture	Hrs:	9
	ne shells of Double curvatures: Geometry, analysis and design of el				
	bolic parabolic shapes, inverted umbrella type.		Pan		J,
	al shells: General equation - Analysis and axi-symmetrical by n	neml	orane	the	orv

Axi- Symmetrical shells: General equation - Analysis and axi-symmetrical by membrane theory. Application to spherical shell and hyperboloid of revolution cooling towers.

Textbooks:

- 1. Theory of Plates & Shells –Stephen, P.Timoshenko, S.Woinowsky-Krieger Tata MC Graw Hill Edition
- 2. Analysis and design of concrete shell roofs by G.S.Ramaswami. CBS publications.
- 3. Design of concrete shell roofs by Billington Tata MC Graw Hill, New York

- 1. Shell Analysis by N.K.Bairagi. Khanna Publishers, New Delhi.
- 2. Design of Shells and Folded Plates by P.C. Varghese, PHI Learning Pvt. Ltd
- 3. Design of concrete shell roofs by Chaterjee. Oxford and IBH.,

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

1100	COURSE STRUCTURE & SYLLABI				
Course Code	ADVANCED CONCRETE TECHNOLOGY	L	T	P	C
21D21103a	(PE-I)	3	0	0	3
	Semester		J	Ī	
Course Objectives:	This Course Will Enable Students:				
Ÿ	properties of concrete making materials				
To do mix d					
	the methods of concrete				
 Knowledge 	about advance tests on concrete				
	CO): Student will be able to				
3	r with the properties of concrete making materials				
	influence and compatibility of chemcial, mineral admixtures in co	oncre	ete		
	nowledge on recent advances in special concretes.				
	various methods of concrete				
 Analyse the p 	performance of concrete structure through microstructure analys	is			
UNIT - I			ure H	Irs:10	0
Cements and Adm	ixtures: Portland Cement – Chemical Composition - Hydra	ition	, Set	ting	and
	ent – Structures of Hydrated Cement – Mechanical Strength				
	rate Cement Paste – Heat of Hydration of Cement – Influen				
	perties of Cement – Tests on Physical Properties of Cement – I				
•	Cements – Admixtures.		1		
UNIT - II		Lect	ure H	Irs: 1	0
	ication of Aggregate – Particle Shape and Texture – Bond St				
	ies of Aggregate Specific Gravity, Bulk Density, Porosity,				
	ate – Soundness of Aggregate – Alkali – Aggregate Reaction, T				
	Fineness Modulus – Grading Curves – Grading Requirements –				
	Grading of Fine and Coarse Aggregates Gap Graded Aggregates				
Aggregate Size.					
UNIT - III	L	ectu	re Hr	s:10	
Fresh Concrete: W	Vorkability - Factors Affecting Workability - Measurement of	f W	orkal	bility	by
Different Tests – E	ffect of Time and Temperature on Workability - Segregation	ano	d Ble	edin	ıg –
Mixing and Vibratio	n of Concrete – Quality of Mixing Water.				
	e: Water/Cement Ratio-Abram's Law – Gel Space Ratio – E				
	ength of Concrete – Strength in Tension and Compression- Grit				
	Strength - Autogeneous Healing - Relation Between Compression				
	nd Maturity of Concrete Influence of Temperature on Strength				
	l Concrete – Compression Tests – Tension Tests – Factors Aff	ectir	ıg St	reng	th –
	tting Tests – Non Destructive Testing Methods.				
UNIT - IV			cture		
	ge and Creep: Modulus of Elasticity – Dynamic Modulus				
	Early Volume Changes – Swelling – Draying Shrinkage				
	ors Affecting Shrinkage – Differential Shrinkage – Moi				
	age-Creep of Concrete – Factors Influencing Creep – Relation	ı Be	twee	n Cı	reep
	f Creep – Effect of Creep.	т			
UNIT - V			cture		
Mix Design: Propor	tioning of Concrete Mixes by Various Methods – Fineness M	odul	us, T	rıal	and

Mix Design: Proportioning of Concrete Mixes by Various Methods – Fineness Modulus, Trial and Error, Mix Density, Road Note. No. 4, ACI and ISI Code Methods – Factors in The Choice of Mix Proportions – Durability of Concrete – Quality Control of Concrete – Statistical Methods – High Strength Concrete Mix Design.

Special Concretes: Light Weight Concretes –Light Weight Aggregate Concrete – Cellular Concrete - No Fines Concrete – High Density Concrete – Fiber Reinforced Concrete – Different Types of Fibers - Factories Affecting Properties of FRC – Applications Polymer Concrete – Types of Polymer

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Concrete Properties of Polymer Concrete and Applications

Textbooks:

- 1. Properties of Concrete by A.M.Neville Pearson Publication 4th Edition
- 2. Concrete Technology by M.S.Shetty. S.Chand & Co.; 2004
- 3. Concrete Technology by A.R. Santha Kumar, Oxford University Press, New Delhi

- 1. Concrete: Micro Structure, Properties and Materials P.K.Mehta and J.M.Monteiro, Mc-Graw Hill Publishers
- 2. Design of Concrete Mix by Krishna Raju, CBS Pubilishers.
- 3. Concrete Technology by A.M.Neville Pearson Publication
- 4. Concrete Technology by M.L. Gambhir. Tata Mc. Graw Hill Publishers, New Delhi
- 5. Non-Destructive Test and Evaluation of Materials by J.Prasad & C.G.K. Nair , Tata Mcgraw Hill Publishers, New Delhi

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

	COURSE STRUCTURE & STLLABI				
Course Code	ADVANCED MATHEMATICAL METHODS	L	T	P	C
21DBS105	Common to	3	0	0	3
	(SE and CM and SE (PEC-I))				
	Semester				
Course Objective	es: This Course Will Enable Students:				
equations	eulus of variation, numerical methods of solving ordinary and p knowledge in basic concepts of finite element methods and applications.			feren	ntial
Course Outcome	s (CO): Student will be able to				
Numerica boundary	ctionals using Hamilton's principle. lly solve ordinary and partial differential equations that are value problems. concepts of finite element method for 1-D and 2-D problems.	init	tial v	value	or
UNIT - I	Calculus of Variation	Leo	cture	Hrs:	8
Calculus of Varia	ation – Functionals – Euler's Equation - Solution of Euler's Equat	ion -	_		
Isoperimetric prob	olems – several dependent variables – Functionals involving highe	r			
Order derivatives	 Hamilton's principle – Lagrange's Equations. 				
UNIT - II	Numerical Solution of ordinary Differential Equations &	Lec	cture	Hrs:	8
	Eigen values and Eigen vectors				
Numerical Metho	ods: Eigen values and Eigen vectors – general method – power				
Method, spectral i	method.				
Numerical Soluti	ion of ordinary Differential Equations - Taylor Series Method, I	Picar	d's n	netho	d,
Euler's method m	odified Euler's method & R.K. Method.				
UNIT - III	Numerical solution of partial differential equations Le	ectur	e Hrs	s: 10	
Numerical soluti	ion of partial differential equations -elliptical equations star	ndaro	d fiv	e Po	ints
formula, Diagonal	l five point formula -Solution of Laplace equation by Leibmann's	itera	ation	meth	ıod,
Poisson's equation	n and its applications.				
UNIT - IV	Numerical Solution of Partial Differential Equations	Lec	cture	Hrs:	8
Numerical Soluti	on of Partial Differential Equations – Parabolic Equations Bend	ler –	Schn	nidt	
	Schmidt Recurrence Equation, Crank-Nicholson Difference Metholson				
UNIT - V	Finite Element Method		cture		
	Method - Weighted residual methods, least square method, Gel				
Finite Elements -	- Interpolating over the whole Domain - one dimensional case,	two	dim	ensic	onal

Textbooks:

1. Higher Engineering Mathematics By B.S. Grewal Khanna Publishers.

case – Application to Boundary value Problems.

2. Numerical Methods For Engineers By Steven C.Chapra And Raymond P.Canale – Mc Graw Hill Book Company.

- 1. Applied Numerical Analysis By Curtis. F.Gerald- Addeson Wesely Publishing Company.
- 2. C-Language And Numerical Methods By C-Xavier. New Age International Publishers.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

3. Computational Methods For Partial Differential Equations By M.K.Jain, SKR Lyengar, R.K.Jain.

Online Learning Resources:

After completion of this course the student should be able to:

- Understand the concept and steps of calculus of variation.
- Solve ordinary and partial differential equations numerically.
- Solve the initial and boundary value problems numerically.
- Solve the 1-D and 2-D problems using finite element method.
- Identify, formulate and solve structural engineering problems.

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

like.	COURSE STRUCTURE & SYLLABI				
Course Code	DESIGN of PRESTRESSED CONCRETE	L	Т	P	C
21D35104b	(PE-II)	3	0	0	3
L	Semester			Ī	
		<u> </u>			
	ives: This Course Will Enable Students:				
	rize students with concrept of prestressing and analysis of prestress				
	and analysis of pretension and post tensioned concrete memebers				
	ination of deflections of prestressed members				
	ulate the losses of prestress,creep and shrinkage.				
	nes (CO): Student will be able to				
	erstand the basic concepts about prestressed concrete and analysis of	pres	stress	;	
	e the effective losses in prestress				
	e the effect of prestressing force in the beahviour of beams in flexure				
	gn shear, torsion and transmission length in prestressed concrete men	mber	:S		
	of compression and tension members as per codes of practice				
UNIT - I			ure F		
INTRODUCT	ION: Development of Prestressed Concrete –Advantages and Disaction	dvan	tages	of I	PSC
Over RCC -G	eneral Principles of Pre-Stressing-Pre Tensioning and Post Tensi	onin	g - N	Mate	rials
Used in PSC-H	High Strength Concrete -High Tension Steel-Different Types /Me	thod	s/Sys	stem	s of
Prestressing.					
UNIT - II			ure F		
Losses of Pres	stress: Estimation of The Loss of Prestress Due To Various Car	uses	Like	e Ela	istic
Shortening of	Concrete ,Creep of Concrete, Shrinkage of Concrete, Relaxation	of S	Steel,	, Slij	o in
Anchorage and	Friction.				
UNIT - III		Lect	ure F	Irs:1	0
Flexure & De	flections: Analysis of Sections for Flexure in Accordance With	Ela	stic	The	ory-
Allowable Stre	esses-Design Criteria As Per I.S Code of Practice -Elastic D	esig	n of	Be	ams
(Rectangular, I	and T Sections) for Flexure -Introduction To Partial Prestressi	ng.	Intro	duct	ion-
Factors Influence	cing Deflections-Short Term and Long Term Deflections of Un-crac	cked	and	Crac	ked
Members.	•				
UNIT - IV		Lect	ure F	Irs:1	0
Shear, Bond,	Bearing and Anchorage: Shear in PSC Beams -Principal Stress	es –	Conv	zentio	onal
	for Shear-Transfer of Prestress in Pre-tensioned Members-Transi				
	Bearing At Anchorage -Anchorage Zone Stresses in Post-Tens				
	esign of End Blocks by Guyon, Magnel and Approximate Methods				
Reinforcements				-	
UNIT - V		Lect	ure F	Irs:1	0
	determinate Structures: Introduction –Advantages and Disadvanta	ges	of Co	ontin	uity

Statistically Indeterminate Structures: Introduction –Advantages and Disadvantages of Continuity –Layouts for Continuous Beams-Primary and Secondary Moments –Elastic Analysis of Continuous Beams-Linear Transformation-Concordant Cable Profile-Design of Continuous Beams.

Textbooks:

- 1. Prestressed Concrete by N. Krishna Raju, TMH Pubilishers.
- 2. Prestressed Concrete by K.U.Muthu, I.K. International Publishing House.
- 3. Prestressed Concrete Design by Praveen Nagarajan, Pearson Pubilications.

- 1. Design of Prestressed Concrete Structures, T.Y.Lin, Asian Publishing House, Bombay, 1953.
- 2. Prestressed Concrete, Vol.I&II, Y.Guyon, Wiley and Sons, 1960.
- 3. Prestressed Concrete Design and Construction, F.Leohhardt, Wilhelm Ernst and Shon, Berlin, 1964.
- 4. Reinforced concrete designers hand bood, A view point publication, C.E.Reynolds and J.C. Steedman, 1989.

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 5. Prestressed Concrete, Edward P.Nawy, Prentice Hall -.
- 6. Prestressed Concrete by Raj Gopal, Narsoa Pubilications.

M.TECH. IN STRUCTURAL ENGINEERING **COURSE STRUCTURE & SYLLABI**

G G 1		T +	Tr.		
Course Code 21D20103a	MAINTENANCE and REHABILITATION of STRUCTURES (PE – II)	1 L 3	T 0	P 0	<u>C</u>
21D20103a	Semester	- 3		<u>'</u> 	3
	Semester			<u> </u>	
Course Objecti	ives: This Course Will Enable Students:				
	the rate of corrosion in various exposure conditions				
	act non destructive testing of structural elements				
	a sutiable bonding technique				
 To judge 	the effect of fire and earthquake loads on discontinuites				
Course Outcon	nes (CO): Student will be able to				
Estimat	e the causes for distress and deterioration of structures				
 Apply t 	he NDT for condition assessment of structures, identify damages in	RC s	truct	ıres	
	epair material and retrofitting strategy suitable for distress				
	ate guidelines for repair management of deteriorated structures				
	nening of earthquake and fire damaged elements using various tech				
UNIT - I		Lectur			
	Serviceability and Durability:- General : Quality Assura				
	As Built Concrete Properties, Strength, Permeability, Volume				
	eking. Effects Due To Climate, Temperature, Chemicals, Wear a				
	n Errors, Corrosion Mechanism, Effects of Cover Thickness and		cing 1	Meth	ods
	otection, Inhibitors, Resistant Steels, Coatings Cathodic Protection				
UNIT - II		Lectur			
	and Repair Strategies: Inspection, Structural Appraisal, Edequality Assurance, Conceptual Bases for Quality Assurance School		ic A	pprai	isal,
UNIT - III		Lectur	e Hrs	::10	
Materials for l	Repair: - Special Concretes and Mortar, Concrete Chemicals, S	pecial	Elen	nents	for
	rength Gain, Expansive Cement, Polymer Concrete, Sulphur In	ıfiltrat	ed C	Concr	ete,
	Fibre Reinforced Concrete.				
UNIT - IV		Lectur			
	r Repair: Rust Eliminators and Polymers Coating for Reb				
	te, Mortar and Dry Pack, Vacuum Concrete, Gunite and Shotcre	te Epo	oxy I	nject	ion,
	or Cracks, Shoring and Underpinning.				
UNIT - V		Lectur			
	- Repairs To Overcome Low Member Strength, Deflection, Cathering, Wear, Fire, Leakage, Marine Exposure.	Crackii	ng, C	hem	ical
Textbooks:					
	n Campbell, Allen and Harold Roper, Concrete Structures, Mate	erials,	Mai	ntena	ınce
and Re	pair, Longman Scientific and Technical, U.K. 1991.				

- 2. RT.Allen and S.C. Edwards, Repair of Concrete Structures, Blakie and Sons, UK, 1987.
- 3. MS. Shetty, Concrete Technology Theory and Practice, S.Chand and Company, New Delhi, 1992.

- 1. Santhakumar, A.R.Training Course Notes on Damage Assessment and Repair in Low Cost Housing RHDC-NBO Anna University, Madras, July, 1992.
- 2. Raikar, R.N.Learning From Failures Deficiencies in Design, Construction and Service R&D Centre (SDCPL), Raikar Bhavan, Bombay, 1987.
- 3. N.Palaniappan, Estate Management, Anna Institute of Management, Madras Sep. 1992.
- 4. F.K.Garas, J.L.Clarke, GST Armer, Structural Assessment, Butterworths, UK Aporil 1987.

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	DESIGN of BRIDGES	L	T	P	C
21D20103b	(PE-II)	3	0	0	3
	Semester]	[
Course Objectiv	ves: This Course Will Enable Students:				
	and the various types of bridges				
	and the codal provisions for loading and design standards of bridge				
	the superstructure of bridge using different methods and loading co	nditi	ons		
	and the design of bearings				
	es (CO): Student will be able to				
	with the usage of codal provisions in the design of bridges				
	and design substructure elements of bridges				
	and design various types of bridges like t-beam bridge, slab bridge,	oox c	ulve	rt.	
	te and design of T beam bridge	T4-	T1	1 <i>(</i>	
UNIT - I				<u>[rs:10</u>	
	Classification, Investigations and Planning, Choice of Type – Econo				
_	tions for Road Bridges, Standard Live Loads, Other Forces Ac	eting	on .	Briag	ges,
General Design (τ ,	T1	1.10	
UNIT - II				[rs:10	
	Sulverts – General Aspects – Design Loads – Design Moments, Sho	ears a	ana 1	nrus	ts –
Design of Critica		and	Dot	iline	r of
Slab Bridges for	Bridges – Effective Width of Analysis – Workings Stress Design	anu	Deta	3111111	; OI
UNIT - III		Lecti	ire H	[rs:10)
	s - Introduction - Wheel Load Analysis - B.M. in Slab - P				
	agitudinal Girders by Courbon's Theory Working Stress Design				
	rete T-Beam Bridges for IRC Loading.		200		. 01
UNIT - IV		Lec	ture	Hrs:	9
	ncrete Bridges – General Features – Advantages of Prestressed C	oncre	ete B	ridge	<u>s</u> –
	restressed Concrete Bridges - Post Tensioned Prestressed Concre				
	Tensioned Prestressed Concrete Slab Bridge Deck. Bridge Be				
Features – Type	es of Bearings - Forces on Bearings Basis for Selection of B	earin	gs –	Des	ign
	el Rocker and Roller Bearings and Its Design – Design of Elastom	etric	Pad	Bear	ing
	tomeric Pot Bearings.				
UNIT - V				Hrs:	
	ments – General Features – Bed Block – Materials for Piers and A				
	Acting on Piers – Design of Pier – Stability Analysis of Piers – G	enera	ıl Fea	ature	s of
	ces Acting on Abutments – Stability Analysis of Abutments.				
Textbooks:					
	ntials of Bridges Engineering - D.Hohnson Victor Oxford & IB	НРι	ıblish	ners (Co-
	ate Ltd.	3 - 4		171	
	gn of Concrete Bridges MC Aswanin VN Vazrani, MM I	x atw	anı,	Kha	nna
	ishers.				
3. Brid	ge Engineering – S.Ponnuswamy.				

- 1. Concrete Bridge Design, Browe, R.E., C.R.Books Ltd., London, 1962.
- 2. Reinforced Concrete Bridges, Taylor F.W., Thomson, S.E., and Smulski E., John Wiley and Sons, New York, 1955.
- 3. An Introduction To Structural Design of Concrete Bridges, Derrick Beckett, Surrey University; Press, Henlely Thomes, Oxford Shire, 1973
- 4. Bridge Analysis Simplified, Bakht.B.And Jaegar, L.G. Mc Graw Hill, 1985.
- 5. Design of Bridges N.Krishna Raju Oxford & IBH
- 6. Design of Bridge Structures FR Jagadeesh, M.A. Jaya Ram Eastern Economy Edition.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED CONCRETE LABORATORY	L	T	P	C
21D35206		0	0	4	2
	Semester			I	

Course Objectives: The students will acquire knowledge about

- To learn the principles of workability in cement concrete.
- To learn the preliminary tests on aggregates like flakiness test, elongation test, specific gravity, bulk density fineness modulus.
- To know the compression test, Young's modulus test procedures
- To learn the mix design procedure

Course Outcomes (CO): At the end of the course, students will be able to:

- Assess the workability of cement concrete and its suitability, quality of concrete
- Assess the quality of fine and coarse aggregates after testing the aggregates according to IS specifications.
- Test the quality of cement concrete by conducting compressive strength on concrete cubes.
- Design different grades of mix design and also asses the fineness of cement, flash, silica

List of Experiments:

- 1. Mix Design of Concrete and Casting of Specimen
- 2. Mix Design of High Strength Concrete Including Casting and Testing of Specimens.
- 3. Fresh properties of self-compacting concrete
- 4. Permeability of Hardened concrete
- 5. Rapid chloride permeability of hardened concrete & Carbonations Studies.
- 6. Compressive strength split tensile strength & flexural strength of self compacting
- 7. concrete.
- 8. Young's Modulus of Concrete
- 9. Accelerated Curing Test on Concrete Cubes.
- 10. Non Destructive Tests on Concrete.
- 11. Mix Design of Concrete using Mineral Admixtures.
- 12. Bending Test on A RCC Beam Under:
 - i. Single Point Load
 - ii. Two Point Load

References:

- 1. Properties of Concrete, Neville A. M., 5th Edition, Prentice Hall, 2012.
- 2. Concrete Technology, Shetty M. S., S. Chand and Co., 2006.
- 3. Concrete Technology by A.R. Santha kumar, Oxford University Press.

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED STRUCTURAL ENGINEERING	L	T	P	С
21D35106	LABORATORY	0	0	4	2
	Semester			I	

Course Objectives: The students will acquire knowledge about

- Ddesign of experiments,
- To investigate the performance of structural elements.
- To evaluate the different testing methods and equipments.

Course Outcomes (CO): At the end of the course, students will be able to:

- Achieve Knowledge of design and development of experimenting skills.
- Understand the principles of design of experiments
- Design and develop analytical skills.
- Summerize the testing methods and equipments.

List of Experiments:

- 1. Load deflection characteristics of under reinforced concrete beam.
- 2. Load Deflection characteristics of over reinforced concrete beam.
- 3. Comparison of reinforced concrete beam with and without shear reinforcement.
- 4. Detection of reinforcement in structural members using profometer.
- 5. Temperature effects on compressive strength of concrete.
- 6. Impact strength of concrete beam.
- 7. Testing of Brick masonry wall.
- 8. Load deflection characteristics of reinforced concrete beam under cyclic loading using 500kN actuator.
- 9. Load deflection characteristics of reinforced concrete column under cyclic loading using 1000kN actuator.
- 10. Load deflection characteristics of reinforced concrete beam under torsion.
- 11. Ambient Vibration Testing.

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	RESEARCH METHODOLOGY AND IPR	L	T	P	С	
21DRM101		2	0	0	2	
	Semester	I				

Course Objectives:

- Identify an appropriate research problem in their interesting domain.
- Understand ethical issues understand the Preparation of a research project thesis report.
- Understand the Preparation of a research project thesis report
- Understand the law of patent and copyrights.
- Understand the Adequate knowledge on IPR

Course Outcomes (CO): Student will be able to

- Analyze research related information
- Follow research ethics
- Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT - I Lecture Hrs:

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, scope, and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT - II Lecture Hrs:

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

UNIT - III Lecture Hrs:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT - IV Lecture Hrs:

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT - V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Textbooks:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"

- 1. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 2. Halbert, "Resisting Intellectual Property", Taylor & Drancis Ltd ,2007.
- 3. Mayall, "Industrial Design", McGraw Hill, 1992.
- 4. Niebel, "Product Design", McGraw Hill, 1974.
- 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	CTDIICTIDAI DVNAMICC	L	T	P	C
21D35201	STRUCTURAL DYNAMICS	3	0	0	3
	Semester		I	Ι	
Course Objectiv	ves: This Course Will Enable Students:				
Determine	vibration characteristics of structures like frequency, amplitude, im	pede	nce a	and t	im
period					
	te the response of single and multi degree of freedom systems				
	the response of structures for pulse excitation like blast load				
	te the response of Multi Degree of Freedom systems				
Course Outcom	es (CO): Student will be able to				
Write equa	tion of motion for single and multi degree of freedom systems				
 Understand 	I the impact of damping on charecterstics of vibrating system				
 Gain Know 	yledge about arbitary and pulse excitation				
 Understand 	l applications of Numerical methods in dynamics				
	various theories of failure and plasticity				
UNIT - I	Le	ectur	e Hrs	:10	
Theory of Vibr	rations: Introduction -Elements of A Vibratory System - Degr	rees	of F	reed	on
Continuous Syst	ems -Lumped Mass Idealization -Oscillatory Motion -Simple Ha	ırmo	nic N	Motic	n
	ntation of S.H.M - Free Vibrations of Single Degree of Freedom (
Undamped and I	Damped -Critical Damping -Logarithmic Decrement -Forced Vil	orati	ons c	of SE	00
	ic Excitation –Dynamic Magnification Factor- Bandwidth.Funda				
	lysis-Types of Prescribed Loading- Methods of Discretization- Fo				
Equations of Mo	• • • • • • • • • • • • • • • • • • • •				
UNIT - II		ctur	e Hrs	:10	
	Freedom System : Formulation and Solutions of The Equation				-re
	nse –Response To Harmonic, Periodic, Impulsive and General Dy				
Duhamel Integra					0
UNIT - III		Lect	ure H	Irs:10)
Multi Degree of	Freedom System: Selection of The Degree of Freedom –Evalua	tion	of S	truct	ura
	es-Formulation of The MDOF Equations of Motion –Undamped				
	n Value Problem for Natural Frequencies and Mode Shapes- Ana				
	al Coordinates – Uncoupled Equations of Motion – Orthogonal Pro				
	perposition Procedure	•			
UNIT - IV		Lect	ure H	Irs:9	_
	tion Analysis: Stodola Method- Fundamental Mode Analysis –A				on
	es –Holzer's Method –Basic Procedure –Transfer Matrix Procedure				
UNIT - V	T T T T T T T T T T T T T T T T T T T	Lo	oturo	Urc.	0
	Description Descri		Cture		
	- •		ı 1 aiis	14110	11
	 pproach -SDOF and MDOF System- I.S Code Methods of Analysis tem: Introduction –Flexural Vibrations of Beams- Elementary 		Far	ation	
wionon –Analys	is of Undamped Free Shapes of Simple Beams With Different	CHC	. C01	uuiui(ж

Textbooks:

- 1. Structural Dynamics for Earthquake Engineering, A.K. Chopra, Pearson Publications
- 2. Dynamics of Structures by Clough & Penziem
- 3. Structural Dynamics by Roy. R. Craig John willy & fours.

Reference Books:

1. Structural Dynamics by Mario Paz

Principles of Application To Continuous Beams.

- 2. I.S:1893(Latest)" Code of Practice for Earthquakes Resistant Design of Stuctures"
- 3. Fundamentals of Vibration, Anderson R.A, Amerind Pulblishing Co.,1972.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Objectives: This Course Will Enable Students: To provide an overview and basic fundamentals of Finite Element Analysis. To introduce basic aspects of finite element theory, including domain discretization, interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles — Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Lecture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution —Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Lecture Hrs:9					P	C
Course Objectives: This Course Will Enable Students: To provide an overview and basic fundamentals of Finite Element Analysis. To introduce basic aspects of finite element theory, including domain discretization, interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles —Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axisymmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Decture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution —Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Lecture Hrs:9 Lecture Hrs:9 Lecture Hrs:9	21D20201	ENGINEERING	3	0	0	3
To provide an overview and basic fundamentals of Finite Element Analysis. To introduce basic aspects of finite element theory, including domain discretization, interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles — Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Lecture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution—Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Lecture Hrs:9 Lecture Hrs:9 Lecture Hrs:9		Semester		I	I	
To provide an overview and basic fundamentals of Finite Element Analysis. To introduce basic aspects of finite element theory, including domain discretization, interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles — Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Lecture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution—Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Lecture Hrs:9 Lecture Hrs:9 Lecture Hrs:9						
 To introduce basic aspects of finite element theory, including domain discretization, interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Lecture Hrs:10 Introduction-Concepts of FEM -Steps Involved -Merits &Demerits -Energy Principles -Discretization -Rayleigh -Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Lecture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements -Static Condensation of Global Stiffness Matrix-Solution -Initial Strain and Temperature Effects. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements -Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis -Bodies of Revolution-Axi Symmetric Modelling -Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9 	Course Objective	es: This Course Will Enable Students:				
interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems. To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I	 To provid 	e an overview and basic fundamentals of Finite Element Analysis				
the resulting algebraic systems. To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I						
To explain the underlying concepts behind variational methods and weighted residual methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM –Steps Involved –Merits &Demerits –Energy Principles – Discretization –Rayleigh –Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements –Static Condensation of Global Stiffness Matrix-Solution –Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models – Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements – Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis – Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9	interpolat	ion, application of boundary conditions, assembly of global arrays	s, and	l solu	tion	of
methods in FEM. Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM -Steps Involved -Merits &Demerits -Energy Principles - Discretization -Rayleigh -Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Unit - II Done Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements -Static Condensation of Global Stiffness Matrix-Solution -Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis - Displacement Models -Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements -Geometric Invariance -Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices -Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements -Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis -Bodies of Revolution-Axi Symmetric Modelling -Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9	the resulti	ng algebraic systems.				
Formulate simple structural problems in to finite elements Course Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM -Steps Involved -Merits &Demerits -Energy Principles - Discretization -Rayleigh -Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements -Static Condensation of Global Stiffness Matrix-Solution -Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis - Displacement Models -Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements -Geometric Invariance -Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices -Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements -Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis -Bodies of Revolution-Axi Symmetric Modelling - Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:99	 To explain 	n the underlying concepts behind variational methods and weighte	ed res	sidua	l	
Ourse Outcomes (CO): Student will be able to Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I	methods i	n FEM.				
 Analyse and build FEA models for various Engineering problems. Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Lecture Hrs:10 Introduction-Concepts of FEM -Steps Involved -Merits &Demerits -Energy Principles - Discretization -Rayleigh -Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Lecture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements -Static Condensation of Global Stiffness Matrix-Solution -Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis - Displacement Models -Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements -Geometric Invariance -Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices -Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements -Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis -Bodies of Revolution-Axi Symmetric Modelling - Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V 	 Formulate 	e simple structural problems in to finite elements				
 Able to identify information requirements and sources for analysis, design and evaluation Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Lecture Hrs:10 Introduction-Concepts of FEM -Steps Involved -Merits &Demerits -Energy Principles - Discretization -Rayleigh -Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Lecture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements -Static Condensation of Global Stiffness Matrix-Solution -Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis - Displacement Models -Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements -Geometric Invariance -Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices -Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements -Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis -Bodies of Revolution-Axi Symmetric Modelling - Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9 	Course Outcome	s (CO): Student will be able to				
Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles — Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution —Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis—Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements —Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis —Bodies of Revolution-Axi Symmetric Modelling —Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9	Analyse a	nd build FEA models for various Engineering problems.				
Use professional-level finite element software to solve engineering problems. Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles — Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution —Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis—Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements —Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis —Bodies of Revolution-Axi Symmetric Modelling —Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9	•	0 01	and e	evalu	ation	1
Interpret results obtained from FEA software solutions, not only in terms of conclusions but also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles — Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution —Initial Strain and Temperature Effects. UNIT - III Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements —Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis —Bodies of Revolution-Axi Symmetric Modelling — Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
also awareness of limitations. UNIT - I Introduction-Concepts of FEM —Steps Involved —Merits &Demerits —Energy Principles — Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements —Static Condensation of Global Stiffness Matrix-Solution —Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis — Displacement Models —Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements —Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis —Bodies of Revolution-Axi Symmetric Modelling —Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9	•			nclus	ions	but
Introduction-Concepts of FEM –Steps Involved –Merits &Demerits –Energy Principles – Discretization –Rayleigh –Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements –Static Condensation of Global Stiffness Matrix-Solution –Initial Strain and Temperature Effects. UNIT - III Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models –Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9					10110	
Introduction-Concepts of FEM –Steps Involved –Merits &Demerits –Energy Principles – Discretization –Rayleigh –Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi- Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II			Lecti	ure H	rs:10	
Discretization —Rayleigh —Ritz Method of Functional Approximation. Elastic Formulations: Stress Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Lecture Hrs:10						
Equations-Strain Displacement Relationships in Matrix Form-Plane Stress, Plane Strain and Axi-Symmetric Bodies of Revolution With Axi Symmetric Loading UNIT - II Done Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements –Static Condensation of Global Stiffness Matrix-Solution –Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models –Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9		*	~			
UNIT - II Lecture Hrs:10 One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements –Static Condensation of Global Stiffness Matrix-Solution –Initial Strain and Temperature Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models –Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
UNIT - II One Dimensional FEM-Stiffness Matrix for Beam and Bar Elements Shape Functions for ID Elements –Static Condensation of Global Stiffness Matrix-Solution –Initial Strain and Temperature Effects. UNIT - III Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models –Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Elements – Static Condensation of Global Stiffness Matrix-Solution – Initial Strain and Temperature Effects. UNIT - III		<u> </u>	Lecti	ure H	rs:10	5
Effects. UNIT - III Lecture Hrs:10 Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models – Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements – Geometric Invariance – Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices – Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements – Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis – Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9	One Dimensiona	I FEM-Stiffness Matrix for Beam and Bar Elements Shape	Func	tions	for	ID
Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models –Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9	Elements -Static	Condensation of Global Stiffness Matrix-Solution -Initial Strain	and	Tem	pera	ture
Two Dimensional FEM-Different Types of Elements for Plane Stress and Plane Strain Analysis – Displacement Models –Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Displacement Models –Generalized Coordinates-Shape Functions-Convergent and Compatibility Requirements –Geometric Invariance –Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Requirements —Geometric Invariance —Natural Coordinate System-Area and Volume Coordinates-Generation of Element Stiffness and Nodal Load Matrices —Static Condensation. UNIT - IV Lecture Hrs:9 Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements —Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis —Bodies of Revolution-Axi Symmetric Modelling — Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Generation of Element Stiffness and Nodal Load Matrices –Static Condensation. UNIT - IV Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements −Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis −Bodies of Revolution-Axi Symmetric Modelling − Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9			ume	Coo	dina	ıtes-
Isoparametric Formulation-Concept, Different Isoparametric Elements for 2D Analysis-Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Formulation of 4-Noded and 8-Noded Isoparametric Quadrilateral Elements –Lagrangian Elements-Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Serendipity Elements. Axi Symmetric Analysis –Bodies of Revolution-Axi Symmetric Modelling – Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
Strain Displacement Relationship-Formulation of Axi Symmetric Elements. UNIT - V Lecture Hrs:9						
UNIT - V Lecture Hrs:9			ietric	10100	ıemr	ıg –
		The Relationship-Politiciation of Axi Symmetric Elements.	Le	rture	Hre	<u>Q</u>
		anal FFM-Different 3 D Flaments 3D Strain Displacement				

Textbooks:

- 1. Finite Elements Methods in Engineering by Tirupati. R. Chandrnpatla and Ashok D. Belegundu Pearson Education Publications.
- 2. Finite Element Analysis Theory & Programming by C.S.Krishna Murthy- Tata Mc.Graw Hill Publishers
- 3. Finite Elements Methods in Engineering by Tirupati. R. Chandrnpatla, Universities Press India Ltd. Hyderabad.

Reference Books:

- 1. Finite Element Method and Its Application by Desai ,2012, Pearson Pubilications.
- 2. finite Element Methods by Darrel W.Pepper, Vikas Pubilishers

Formulation of Hexahedral and Isoparametric Solid Element.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 3. Finite Element Analysis and Procedures in Engineering by H.V.Lakshminaryana, 3rd Edition, Universities Press, Hyderabad.
- 4. Finite Element Analysis in Engineering Design by S.Rajasekharan, S.Chand Publications, New Delhi.
- 5. Finite Element Analysis by S.S. Bhavakatti-New Age International Publishers
- 6. Finite Element Analysis by P Seshu-PHI Learning Publications.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

	COURSE STRUCTURE & STELLADI				
Course Code	DESIGN of REINFORCED CONCRETE	L	T	P	C
21D20202a	FOUNDATIONS (PE-III)	3	0	0	3
	Semester]	Ι	
		1			
Course Objectives	: This Course Will Enable Students:				
To explore a	and examine a site				
	eral soil pressures acting on to a wall				
	bearing capacity of a soil using different theories at different con-	ditior	ıs		
	ious dynamic forces				
	ecial foundation for vibrating machinery				
	(CO): Student will be able to				
	he earthpressures on foundations and retaining structures				
	allow and deep foundations				
	e bearing capacity of soils and foundation settlements				
	dations for different machines				
	nfluence of vibrations	4	11.	10	
UNIT - I			re Hi		1
	JNDATIONS-I: General Requirements of Foundations. T				
	The Factors Governing The Selection of Type of Shallow Fo				
	ow Foundations by Terzaghi's Theory and Meyerhof's Theory				
-	olution To Problems Based on These Theories). Local Shear a	na C	iener	ai Sr	iear
Failure and Their Id		4	11.	10	
			re Hi		اء مہ ما
	NDATIONS-II: Bearing Capacity of Isolated Footing Subjected earing Capacity of Isolated Footing Resting on Stratified Soils				
	nalysis. Analysis and Structural Design of R.C.C Isolated, Co				
Footings.	marysis. Anarysis and Structural Design of R.C.C Isolated, Co	1110111	cu a	iiu S	пар
UNIT - III	I	ecture	e Hrs	:10	
	FIONS-I: Pile Foundations-Types of Pile Foundations. Esting				ring
	Foundation by Dynamic and Static Formulae. Bearing Capacit				
	roups. Negative Skin Friction, Pile Load Tests. Sheet Pile Wall				
	d Bulkheads, Earth Pressure Diagram, Determination of Depth				
	imbering of Trenches-Earth Pressure Diagrams-Forces in Struts.				
UNIT - IV		ectur	e Hrs	:9	
DEEP FOUNDAT	TIONS-II: Well Foundations-Elements of Well Foundation. Fo	rces	Acti	ng o	n A
Well Foundation.	Depth and Bearing Capacity of Well Foundation. Design	gn c	f In	divid	lual
Components of V	Vell Foundation (Only Forces Acting and Principles of D	esigi	n). P	roble	ems
Associated With W	Yell Sinking.				
UNIT - V			cture		
	in PROBLEMATIC SOILS: Foundations in Black C				
	ms Associated With Black Cotton Soils. Lime Column Techniq				
	Reamed Piles-Principle of Functioning of Under Reamed				
	of Under Reamed Pile. Use of Cohesive Non Swelling (Cl	NS)	Laye	r Be	low
Shallow Foundation	ns.				
Textbooks:					

1 extbooks:

1. Analysis and Design of Foundations and Retaining Structures-Shamsher Prakash, Gopal Ranjan and Swami Saran.

- 1. Analysis and Design of Foundations-J.E.Bowles
- 2. Foundation Design and Construction-Tomlinson
- 3. Foundation Design-Teng.
- 4. Geotechnical Engg C. Venkatramaiah

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	EXPERIMENTAL STRESS ANALYSIS	L	T	P	C
21D20202b	(PE-III)	3	0	0	3
210202020	Semester				
	Someston		I		
Course Objectiv	es: This Course Will Enable Students:				
To perfor	m NDT test and interpret the results				
	stand the science behind working of strain gauge				
	nd the practical applications of strain gauge				
 To determ 	nine the stress distribution in anacrylic block using the concept of	f phot	oelas	sticity	y
Course Outcome	es (CO): Student will be able to				
	stand the mechanical properties of strain gaugees and applications				
	stand the design and performance of strain gauges				
	stand the methodsof Non destructive testing				
	stand the methods of photo elasticity and models				
UNIT - I		Lectu	re Hr	s:10	
PRINCIPLES of	EXPERIMENTAL APPROACH				
	erimental Analysis Introduction, Uses of Experimental	Stre	SS A	Analy	vsis
	perimental Stress Analysis, Different Methods –Simplification o			-	
UNIT - II		Lectu			
	UREMENT USING STRAIN GAUGES :-				
	ain and Its Relation of Experimental Determinations Propertie	es of	Strair	n-Ga	uge
		auges.			
	ain Gauges - Inductance Strain Gauges - LVDT - Resistanc	e Štra	in G	auge	s –
	Gauge Factor – Materials of Adhesion Base.			U	
UNIT - III		Lectu	re Hr	s:10	
STRAIN ROSSI	ETTES and NON – DESTRUCTIVE TESTING of CONCRE	TE:-I	ntrod	uctio	n –
The Three Eleme	ents Rectangular Rosette - The Delta Rosette Corrections for	Tran	svers	e Str	ain
Gauge. Ultrasonio	Pulse Velocity Method – Application To Concrete. Hammer Tes	st - A	pplic	ation	То
Concrete.	•		-		
UNIT - IV		Lectu	re Hr	s:9	
THEORY of PH	OTOELASTICITY :-				
	nporary Double Refraction – The Stress Optic Law –Effects of S			del i	n A
	Various Arrangements – Fringe Sharpening. Brewster's Stress Op				
UNIT - V		Lec	cture	Hrs:9)
	ONAL PHOTOELASTICITY :-				
	ochromatic Fringe Patterns- Isoclinic Fringe Patterns Passage				
	e and Circular Polariscope Isoclinic Fringe Patterns – Compensa				
	ods – Separation Methods – Scaling Model To Prototype Stres	ses –	Mate	rials	for
Photoelasticity- P	roperties of Photoelastic Materials.				

Textbooks:

- 1.Experimental Stress Analysis by J.W.Dally and W.F.Riley, College House Enterprises
- 2. Experimental Stress Analysis by Dr.Sadhu Singh.Khanna Publishers
- 3. Abdul Mubeen, "Experimental Stress Analysis", DhanpatRai and Sons, 2001.

- 1. Experimental Stress Analysis by U.C.Jindal, Pearson Publications.
- 2. Experimental Stress Analysis by L.S.Srinath, MC.Graw Hill Company Publishers.
- 3. Moire Fringes in Strain Analysis, PS Theocaris, Pergammon Press, 2002.

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	STABILITY of STRUCTURES	L	T	P	C
21D20202c	(PE-III)	3	0	0	3
	Semester		I	I	

Course Objectives: This Course Will Enable Students:

- Determine stability of columns and frames
- Determine stability of beams and plates
- Use stability criteria and concepts for analyzing discrete and continuous systems,
- To form differential equations for plate buckling

Course Outcomes (CO): Student will be able to

- Apply the torisonal buckling and plates for buckling concept
- Apply the inelastic behaviour of materials and analyse the inelastic charecter of column
- Analyse the frame structures
- Analyse the plate structures

UNIT - I Lecture Hrs:10

Formulations Related To Beam Columns : Concept of Stability, Differential Equation for Beam Columns –Beam Column With Concentrated Loads –Continuous Lateral Load –Couples -Beam Column With Built in Ends –Continuous Beams With Axial Load –Application of Trignometric Series –Determination of Allowable Stresses.

UNIT - II Lecture Hrs:10

Elastic Buckling of Bars: Elastic Buckling of Straight Columns –Effect of Shear Stress on Buckling-Eccentrically and Laterally Loaded Columns –Energy Methods –Buckling of A Bar on Elastic Foundation, Buckling of A Bar With Intermediate Compressive Forces and Distributed Axial Loads –Buckling of Bars With Change in Cross Section –Effect of Shear Force on Critical Load – Built Up Columns

UNIT - III Lecture Hrs:10

Inelastic Buckling and Torsional Buckling: Buckling of Straight Bars-Double Modulus Theory – Tangent Modulus Theory. Pure Torsion of Thin Walled Bar of Open Cross Section-Non –Uniform Torsion of Thin Walled Bars of Open Cross Section-Torsional Buckling –Buckling Under Torsion and Flexure.

UNIT - IV

Mathematical Treatment of Stability Problems: Buckling Problem Orthogonality Relation —Ritz Method-Timoshenko Method, Galerkin Method

UNIT - V Lecture Hrs:9

Lateral Buckling of Simply Supported Beams and Rectangular Plates : Beams of Rectangular Cross Section Subjected for Pure Bending. Derivation of Equation of Rectangular Plate Subjected To Constant Compression in Two Directions and One Direction.

Textbooks:

- 1. Stability of Metalic Structure by Bleich –Mc Graw Hill
- 2. Theory of Beam Columns Vol I by Chen & Atsuta Mc.Graw Hill
- 3. Timoshenko, S., and Gere., Theory of Elastic Stability, Mc Graw Hill Book Company, 1973.

- 1. Elastic Stability of Structures, Smitses, Prentice Hall, 1973.
- 2. Buckling of Bars Plates and Shells, Brush and Almorth., Mc Graw Hill Book Company .1975.
- 3. Principles of Structural Stability Theory, Chajes, A., Prentice Hall, 1974
- 4. Stability Theory of Structures, Ashwini Kumar, TATA Mc Graw Hill Publishing Company Ltd, New Delhi,1985.

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING **COURSE STRUCTURE & SYLLABI**

Course Code	ADVANCED STEEL DESIGN	L	T	P	С
21D20203a	(PE-IV)	3	0	0	3
	Semester		I	I	
G 011 #	THE CONTROLL OF THE				
	es: This Course Will Enable Students:				
	and the relation between structural analysis and design provisions I analysis of girders under maximum load effects				
	l analysis of griders under maximum load effects I analysis of cold formed steels under stiffened and un stiffened co	nditi	ons		
_	d analysis of cold formed steets under sufferied and an sufferied cold analysis of industry buildings	iiditi	OHS		
	s (CO): Student will be able to				
	wledge about plastic analysis of steel structures				
	and design of girders				
Analyze a	and design of steel tanks and stacks				
	and design of industrial buildings				
	and design of light gauge steel structures				
UNIT - I		Lectu			
	Supporting Steel Stacks/Chimneys – Considerations for Pre				
	ements – Thermal Requirement – Mechanical Force Requirement				
	nation) – Detailed Estimation of Wind; Dead-And Other Acc				
UNIT - II	d Design Including Provision of Stakes /Spoilers – Design of Supe				ıy.
	Storey Frames Using Approximate Methods and Substitute Frame	ectui			
Cantilever Method		e Me	moa:		
Portal Method	d &				
UNIT - III		Lectu	ıre H	rs:10)
	Girder – Introduction – Loads Acting on The Gantry Girder – Per				
- Types of Gantry	Girders and Crane Sails – Crane Data – Maximum Moments and	l She	ears -	- Des	sign
Procedure (Restric	cted To Electrically Operated Cranes)				
UNIT - IV				Hrs:	
	tic Analysis, Applications To The Cases of Rectangular Portal F				
	in Structural Design – Application To Simple – Rectangular	Por	tal I	ram	e –
Minimum Weight UNIT - V	Design.	Lac	+11#0	Hrs:	
	of Plastic Design: Combining Mechanics Methods, Plastic Mome				
	tion To Few Cases of Simple Two Storied Rectangular Portal 1				
Estimation of Def		ıı	C5 II	iciuu	mg
Textbooks:					
	nalysis of Structures by B.G.Neal				
2. Steel Skel	leton V.I and II by Baker				
	Steel Structures by Vazarani and Ratwani				
Reference Books					
	gth of Materials (Vol-II)) by Timoshenko.				
	vsis of Steel Structure by Manohar.				
	vsis of Steel Structure by Pinfold				
	vsis of Steel Structure by Arya & Azmani vsis of Steel Structure by Relevant IS Codes.				
	vsis of Steel Structure by Punmia, B.C.				
U. Allaly	isis of Sicol Sulucture by Lumma, D.C.				

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	FRACTURE MECHANICS	L	T	P	C
21D20203b	(PE-IV)	3	0	0	3
	Semester		I	I	
	es: This Course Will Enable Students:				
	based on linear elastic fracture mechanics				
	t the variation of plastic zone over thickness of various elements				
	bout the plane strain and plane stress in slip planes				
 To underst 	and the fracture process of concrete and different materials				
	s (CO): Student will be able to				
	sic skills in fracture mechanism of brittle materials				
	ture mechanics theory to calculate stress areas				
	he "energy release rate" around crack tips				
	rack growth due to fatigue				
UNIT - I		Lecti	ure H	rs:10)
Summary of Bas	ic Problems and Concepts:	· <u></u>		-	
Introduction - A	Crack in A Structure - The Stress At A Crack Tip - The Grif	fith (Criter	ion '	Γhe
	isplacement Criterion - Crack Propagation - Closure				
UNIT - II		Lect	ure H	rs:10)
The Elastic Crac	k – Tip Stress Field :				
	Function - Complex Stress Functions - Solution To Crack Probler	ns - '	The I	Effec	t of
	ial Cases - Elliptical Cracks - Some Useful Expressions				
UNIT - III		Lecti	ure H	rs:10)
The Crack Tip P					
	Zone Correction - The Dugdale Approach - The Shape of The Pl	astic	Zone	e - P1	ane
	ne Strain - Plastic Constraint Factor - The Thickness Effect				
UNIT - IV		Lec	cture	Hrs:	9
The Energy Prin	ciple:				
	ase Rate - The Criterion for Crack Growth - The Crack Resist	ance	(R G)	Curve	e) -
	J Integral (Definitions Only)		`		
	cture Toughness:				
	t - Size Requirements - Non-Linearity – Applicability				
	Transitional Behaviour:				
Introduction - An	Engineering Concept of Plane Stress - The R Curve Concept				
UNIT - V		Lec	cture	Hrs:9	9
	ing Displacement Criterion:				
	General Yield - The Crack Tip Opening Displacement - The Po	ssibl	e Use	e of '	Γhe
CTOD Criterion					
	f Stress Intensity Factors:				
I .	alytical and Numerical Methods - Finite Element Methods, Expe	rime	ntal I	Meth	ods
(An Ariel Views					
Textbooks:	• /				
	Engineering Fracture Mechanics - David Broek, Ba	attella	e. Co	olum	bus
	s, Columbus, Ohieo, USA		-, -	. 1 (4111	J 415
I .	d Fatigue Control in Structures - John M.Barsom, Stanley T.Rolfe	. Ros	s H.I	Forne	èv
	ther Quasi-brittle materials - Surender P Shah, Stuart E Swartz, W				J
Reference Books					

- 1. Analysis of Concrete Structures by fracture mechanics, Elfgren L, Routledge,1990
- 2. Fracture Mechanics- Applications to concrete, Victor C.Li and Z P Bazant, ACI SP118
- 3. Fracture Mechanics, ĈT Suri and Zh jin, Elsevier Academic Press, 2012

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED REINFORCED CONCRETE DESIGN	L	T	P	C
21D20203c	(PE-IV)	3	0	0	3
	Semester		I	Ι	

Course Objectives: This Course Will Enable Students:

- To design of reinforced concrete beam
- To design of reinforced concrete slab
- To analyze and design of multi storey building and Industrial Building
- To design special structures such as Deep beams, Corbels and Grid Floors

Course Outcomes (CO): Student will be able to

- Design the strength and serviceability of reinforced concrete elements
- Design special reinforced concrete elements
- Analyse and design of slabs and grid floor
- Design the inelastic behaviour of concrete beams

UNIT - I Lecture Hrs:10

Deflection of Reinforced Concrete Beams and Slabs:

Introduction -Short-Term Deflection of Beams and Slabs -Deflection Due To -Imposed Loads - Short- Term Deflection of Beams Due To Applied Loads- Calculation of Deflection by IS 456 - Calculation of Deflection by BS 8110 - Deflection Calculation by Eurocode – ACI Simplified Method - Deflection of Continuous Beams by IS 456 - Deflection of Cantilevers - Deflection of Slabs

UNIT - II Lecture Hrs:10

Estimation of Crack Width in Reinforced Concrete Members and Design of Deep Beams:

Introduction - Factors Affecting Crack width in Beams - Mechanism of Flexural Cracking Calculation of Crack Widths - Simple Empirical Method - Estimation of Crack width in -Beams by IS 456 of BS 8110 - Shrinkage and Thermal Cracking.

Deep Beams:

Introduction - Minimum Thickness - Steps of Designing Deep Beams - Design by IS 456 - Design According To British Practice - ACI Procedure for Design of Deep Beams - Checking for Local Failures - Detailing of Deep Beams.

UNIT - III Lecture Hrs:10

Shear in Flat Slabs and Flat Plates:

Introduction - Checking for One-Way (Wide Beam) Shear - Two-Way (Punching) Shear Permissible Punching Shear - Shear Due To Unbalanced Moment (Torsional Moments) Calculation of J Values - Strengthening of Column Areas for Moment Transfer by Torsion Which Produces Shear - Shear Reinforcement Design - Effect of Openings in Flat Slabs - Recent Revisions in ACI 318 - Shear in Two – Way Slabs With Beams.

UNIT - IV Lecture Hrs:9

Design of Plain Concrete Walls and Shear Walls:

Introduction - Braced and Unbraced Walls - Slenderness of Walls- Eccentricities of Vertical Loads At Right Angles To Wall - Empirical Design Method for Plane Concrete Walls Carrying Axial Load - Design of Walls for In-Plane Horizontal Forces - Rules for Detailing of Steel in Concrete Walls

Design of Shear Walls:

Introduction - Classification of Shear Walls - Classification According To Behavior - Loads in Shear Walls - Design of Rectangular and Flanged Shear Walls - Derivation of Formula for Moment of Resistance of Rectangular Shear Walls

UNIT - V Lecture Hrs:9

Design of Reinforced Concrete Members for Fire Resistance : Introduction - ISO 834 Standard Heating Conditions- Grading Or Classification - Effect of High Temperature on Steel and Concrete - Effect of High Temperatures on Different Types of Structural Members - Fire Resistance by Structural Detailing From Tabulated Data - Analystical Determination of The Ultimate Bending Moment Capacity of Reinforced Concrete Beams Under Fire - Other Considerations

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Textbooks:

- 1. Reinforced Concrete Structural Elements: Behaviour, Analysis and Design, P.Purushothaman, Tata Mcgraw Hill.
- 2. Reinforced Concrete Desigers Hand Bood, C.E. Reynolds and J.C. Steedman, A View Point Publication.
- 3. Advanced Reinforced Concrete Design, Varghese PC, Prentice Hall of India, 2008

- 1. Limit State Design of Reinforced Concrete Structures by P.Dayaratnam, Oxford & Ibh Publishers.
- 2. Advanced RCC by N.Krishna Raju, Cbs Publishers & Distributors.
- 3. Reinforced Cement Concrete Structures Devdas Menon & Unnikrishna Pillai, Tata Mcgraw Hill

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

21020204	Semester	U	_ U	<u> </u>	
21D20204		0	0	4	2.
Course Code	COMPUTER AIDED DESIGN LABORATORY	L	T	P	C

Course Objectives: The students will acquire knowledge about

- To learn the software applications in structural engineering.
- To learn the analysis of plane, space truss and frames subjected to different types of loadings.
- To draw the detailing of RCC members and to learn the estimations.
- To study the design concepts of steel members like truss, beams and columns.

Course Outcomes (CO): At the end of the course, students will be able to:

- Understand the software usages for structural members.
- Able to analyse plane, space frames and dynamic response and natural frequency for beams and frames.
- Able to design, detailing and estimations of RC members.
- Able to design the steel members like truss, beams and columns.

List of Experiments:

- 1. Analysis of Cantilever, Simply Supported Beam, Fixed Beams, Continuous Beams for Different Loading Conditions.
- 2. Design of R.C.C. Beams, Slabs, Foundations.
- 3. Design of Steel Tension Members
- 4. Reinforcement Detailing in Beam Using Graphics.
- 5. Reinforcement Detailing in Slabs Using Graphics.
- 6. Reinforcement Detailing in Foundation Using Graphics.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	ADVANCED STRUCTURAL DESIGN LAB	L	T	P	С
21D20205		0	0	4	2
	Semester	II			

Course Objectives: The students will acquire knowledge about

- To develop MATLAB codes for solution of simultaneous linear equations.
- To construct codes for 1D Finite Element problems.
- To identify methods to code for numerical integration techniques & statistical methods.
- To model finite difference methods.

Course Outcomes (CO): At the end of the course, students will be able to:

- Design and Detail all the Structural Components of Frame Buildings.
- Design and Detail complete Multi-Storey Frame Buildings
- design the frames using Excel sheets
- Design the Shells and folded plates using ETABS

List of Experiments:

- 1. Static and Dynamic analysis of Building structure using software (ETABS / STAADPRO)
- 2. Design of RCC and Steel structure using software (ETABS / STAADPRO)
- 3. Analysis of folded plates and shells using software.
- 4. Preparation of EXCEL sheets for structural design.

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	EARTHQUAKE RESISTANT DESIGN of BUILDINGS	L	T	P	С
21D35301a	(PE-V)	3	0	0	3
	Semester		I	Ι	1
		1			
Course Objective	es: This Course Will Enable Students:				
	ant effects of earthquakes on engineering structures and its measu	remen	ıt		
 To apply dy 	namics loadson various structures				
	ouildings for earthquake loads as per IS Codes				
	and and implement the concept of ductility in Earthquake Resistant	nt Des	ign		
	es (CO): Student will be able to				
	e measurement of earthquakes and their effect on engineering str				
	e free and forced vibration response of single degree and multi	degre	e of	freed	lom
	ous systems				
	asic principles of conceptual design of Earthquake Resistant buil	dings			
	arious seismic control methods				
UNIT - I		Lectu	re Hi	rs:10	
Engineering Seis					
	auses of Earthquake – Earthquakes and Seismic Waves – Sca				
	eismic Activity - Measurements of Earth Quakes - Seismomet				
	Field Observation of Ground Motion - Analysis of Earthquak				
	Amplification of Characteristics of Surface Layers - Earthqua	ke Mo	otion	on	The
Ground Surface					
UNIT - II		Lectu	re Hi	rs:10	
	actures Under Ground Motion:				
	of Simple Structures - Modelling of Structures and Equations				
	mple Structures - Steady State Forced Vibrations - Non St				
	ponse Spectrum Representations; Relation Between The Natu	re of	The	Grou	und
Motion and Struc				10	
UNIT - III		Lectu			
	cedure Seismic Base Shear – Seismic Design Co-Efficient - V				
	s and Horizontal Shear – Twisting Moment - Over Turning I				
	nd Orthogonal Effects Lateral Deflection – P- Δ Characteris				
	ion. Seismic – Graphs Study, Earthquake Records for Design –				
	haracteristics - Artificial Accelerogram - Zoning Map. Dy			Anar	ysis
UNIT - IV	Analysis – Inelastic – Time History Analysis Evaluation of the l			Hrs:9	
	originat Design of Standard Components and Systems	Leci	ure i	ars:9	
	esistant Design of Structural Components and Systems: Monolithic Reinforced – Concrete Structures – Precast Con-	crata	Ctm	oturo	c
	rete Structures – Steel Structures – Composite – Structures, Ma				
Timber Structures		isom y	Sut	ctult	-s –
Timber Structures).	T -			

UNIT - V Lecture Hrs:9

Fundamentals of Seismic Planning: Selection of Materials and Types of Construction Form of Superstructure – Framing Systems and Seismic Units – Devices for Reducing. Earthquake Loads,

Textbooks:

- 1. Design of Earthquake Resistant Structures by Minoru Wakabayashi.
- 2. Strucutural Dynamics for Earthquake Engineering", A.K.Chopra, Pearson Pubilications.
- 3. Dynamics of Structures. R.W.Clough, Mc Graw Hill, 2nd Edition,

- 1. Fundamentals of Earthquake Engineering, N.M Newmark and E.Rosenblueth, Prentice Hall, 1971.
- 2. Earthquake Design Practice for Buildings. David Key," Thomas Telford, London, 1988

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 3. Earthquake Engg; R.L. Wegel, Prentice Hall 12nd Edition 1989.
- 4. Design of Multi –Storied Buildings for Earthquake Ground Motions J.A. Blume, N.M. Newmark, L.H. Corning.,', Portland Cement Association, Chicago, 1961
- 5. I.S.Codes No. 1893,4326,13920.
- 6. Earthquake Resistant Design by Pankaj Agarwal.

Lecture Hrs:9

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

(Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	LOW COST HOUSING TECHNIQUES	L	T	D	C
21D25301a	(PE- V)	3	0	0	3
21220014	Semester		I		
		I			
Course Objectiv	ves: This course will enable students:				
To poss	ess comprehensive knowledge of planning, design, evaluation,	cons	truct	ion	and
financing	g of housing projects.				
	es on cost effective construction materials and methods.				
	estand on the principles of sustainable housing policies and program				
	the suitable techniques in rural and disaster prone areas by using	g loca	ılly a	vaila	ıble
materials					
	es (CO): Student will be able to				
	t of construction technology and innovative techniques as tools to	o adc	lress	dem	and
mass constru					
	of eco friendly material with their application	intor	onaa		
UNIT - I	e of locally available material according to their availability and ma	Lecti			<u> </u>
		Lecu	пеп	18.10	
Housing Scenar					
	atus of Urban Housing - Status of Rural Housing				
Housing Financ		C4.	. 4	L D	1
-	isting Finance System in India - Government Role As Facilitator	- Sta	itus <i>i</i>	At K	ıraı
•	- Impedimently in Housing Finance and Related Issues				
	hysical Planning for Housing	a4 1	ree:		c
	Planning of Urban Land - Urban Land Ceiling and Regulation A	.ct - 1	EIIIC	ency	OI
~ .	ss - Residential Densities				
Housing The Un	ving Conditions in Slums - Approaches and Strategies for Housing	Lleba	n Do	0"	
UNIT - II		Lecti			`
	ad Adoption of Low Cost Housing Technology	Lecu	пеп	18.10	
	loption of Innovative Cost Effective Construction Techniques - A	donti	on of	Pre	ract
	al Prefatroices - Adopting of Total Prefaction of Mass Housing				
	Cast Rooting/Flooring Systems -Economical Wall System - Si				
	Wall - 19cm Thick Load Bearing Masonery Walls - Half Brick Th				
Wall - Flyash G	rypsym Thick for Masonry - Stone Block Masonery - Adoptio	n of	Prec	ast F	l.C.
	System for Roof/Floor in The Building				
UNIT - III		Lecti	ıre H	rs:10)
Alternative Bui	ding Materials for Low Cost Housing				
	Substitute for Scarce Materials - Ferrocement - Gypsum I				
	ndustrial Wastes - Agricultural Wastes - Fitire Starateru; for ,P,To	pm o	f Alt	erna	tive
Building Mainte					
	structure Services:				
	ent Status - Technological Options - Low Cost Sanitation - Dome	estic '	Wall	- W	ater
Supply, Energy	T	T	4	T T	2
UNIT - IV		Lec	ture	Hrs:	<u> </u>
Rural Housing:	Striangl Departure of Depart Housing Continuous Modell Continuous	1			
	ditional Practice of Rural Housing Continuous - Mud Housing Tecl			ת	1
	aracteristics of Mud - Fire Treatment for Thatch Roof - Soil Sta	10111Z	auon	- K	ırai
Housing Program	18				

UNIT - V

Introduction – Earthquake - Damages To Houses - Traditional Prone Areas - Type of Damages and

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Railways of Non-Engineered Buildings - Repair and Restore Action of Earthquake Damaged Non-Engineered Buildings Recommendations for Future Constructions. Requirement's of Structural Safety of Thin Precast Roofing Units Against Earthquake Forces, Status of R&D in Earthquake Strengthening Measures - Floods, Cyclone, Future Safety

Textbooks:

- 1. Building Materials for Low –Income Houses International Council for Building Research Studies and Documentation.
- 2. Hand Book of Low Cost Housing by A.K.Lal Newage International Publishers.
- 3. Modern Trends in Housing in Developing Countries A.G. Madhava Rao, D.S. Ramachandra Murthy & G.Annamalai.

- 1. Properties of Concrete Neville A.M. Pitman Publishing Limited, London.
- 2. Light Weight Concrete, Academic Kiado, Rudhai.G Publishing Home of Hungarian Academy of Sciences 1963.
- 3. Low Cost Housing G.C. Mathur.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	BUILDING CONSTRUCTION MANAGEMENT	L	T	P	C
21D25301b	(PE- V)	3	0	0	3
	Semester		I	I	
·	es: This Course Will Enable Students:				
	construction project cost estimates.				
	construction documents for planning and management of construct				
	nd the legal implications of contract, common, and regulatory law	to ma	anag	e a	
	on project.				
	nd different methods of project delivery and the roles and responsi	biliti	es of	all	
	ncies involved in the design and construction process.				
	s (CO): Student will be able to				
	rdinate and control of a project from beginning to completion.				
1 0	the most effect method for meeting the requirement in ord	ler t	o pr	oduc	e a
	lly and financially viable project.				
	at different methods of project delivery				
	e legal provisions implied				
UNIT - I				lrs:10	
	pes Constructions Public and Private Contract Management – Scr				
	of Tenders, Contracted, Changes and Terminating of Contract				
	ganizations - Organizational Chart-Decentralization Payrolls	and	Re	cords	. –
	rt of A Construction Company.				
UNIT - II				[rs:10	1
	tices – Times Management – Bar Chart, CPM, PERT – Progress R				
UNIT - III				Hrs:	
	gement and Inventor- Basic Concepts Equipment Manag	geme	nt,	Mate	rial
Management Inve	entory Control.	_		** /	
UNIT - IV				Hrs:9	
	ement – Basic Concepts, Accounting System and Book Keepi				
	rofit and Loss Account, Internal Auditing. Quality Control by Sta	atıstı	cal N	/lethc	ds,
	d Control Charts, Safety Requirements.	T		TT (
UNIT - V	1 Management - Cost Values Palationship Cost Cost 10			Hrs:9	
	Il Management – Cost Volume Relationship, Cost Control System				
	st of Equity Capital Management Cash. Labor and Industrial; La			men	OI
	ract Labor, Workmen's Compensation, Insurance, Industrial Dispu	nes A	ACI.		
Textbooks:	ion Duciest Management by The Decrees Dubilizations Nov. D. 11.				
	ion Project Management by Jha ,Pearson Pubilications,New Delhi		ماد		

2. Construction Technology by Subir K.Sarkar and Subhajit Saraswati – Oxford Higher Education- Univ.Press, Delhi.

- 1. Project Planning and Control With PERT and CPM by Dr.B.C.Punmia, K.K.Khandelwal, Lakshmi Publications New Delhi.
- 2. Optimal Design of Water Distribution Networks P.R.Bhave, Narosa Publishing House 2003.
- 3. Total Project Management, The Indian Context- by: P.K.JOY- Mac Millan Publishers India Limited.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

AUDIT COURSE-I

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	ENGLISH FOR RESEARCH PAPER WRITING	L	T	P	C
21DAC101a		2	0	0	0
	Semester			I	
Course Objectiv	res: This course will enable students:				
 Understa 	nd the essentials of writing skills and their level of readability				
 Learn ab 	out what to write in each section				
 Ensure q 	ualitative presentation with linguistic accuracy				
Course Outcom	es (CO): Student will be able to				
 Understa 	nd the significance of writing skills and the level of readability				
 Analyze 	and write title, abstract, different sections in research paper				
 Develop 	the skills needed while writing a research paper				
UNIT - I		ctur	e Hrs	::10	
-Avoiding Ambig					ncy
UNIT - II		ctur	e Hrs	s:10	
	onents of a Research Paper- Abstracts- Building Hypothesis-Regs- Hedging and Criticizing, Paraphrasing and Plagiarism, Cauteriz			oble	m -
UNIT - III			e Hrs		
Introducing Revi Conclusions-Rec	ew of the Literature – Methodology - Analysis of the Data-Findi ommendations.	ngs	- Dis	cussi	on-
UNIT - IV		Le	cture	Hrs:	9
Key skills needed	for writing a Title, Abstract, and Introduction				
UNIT - V				Hrs:	
Appropriate lang Conclusions	uage to formulate Methodology, incorporate Results, put forth Arg	gume	ents a	nd d	raw
Suggested Read	ing				
 Goldbort 	R (2006) Writing for Science, Yale University Press (available on	Goo	gle F	Books	s)
	urriculum of Engineering & Technology PG Courses [Volume-I]				
	006) How to Write and Publish a Scientific Paper, Cambridge Univ			ess	
	N (1998), Handbook of Writing for the Mathematical Sciences, Sl	AM	•		
Highman		1- D	1	- 1- 4	
	Vallwork, English for Writing Research Papers, Springer New Yor rg London, 2011	K D(orare	ent	

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	DICACODED MANACEMENT	L	T	P	C
21DAC101b	DISASTER MANAGEMENT	2	0	0	0
	Semester]	[

Course Objectives: This course will enable students:

- Learn to demonstrate critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Critically evaluate disaster risk reduction and humanitarian response policy and practice from Multiple perspectives.
- Developanunderstandingofstandardsofhumanitarianresponseandpracticalrelevanceinspecific types of disasters and conflict situations
- Criticallyunderstandthestrengthsandweaknessesofdisastermanagementapproaches, planning and programming in different countries, particularly their home country or the countries they work in

UNIT - I

Introduction:

Disaster:Definition,FactorsandSignificance;DifferenceBetweenHazardandDisaster;Naturaland Manmade Disasters: Difference, Nature, Types and Magnitude.

Disaster Prone Areas in India:

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference to Tsunami; Post- Disaster Diseases and Epidemics

UNIT - II

Repercussions of Disasters and Hazards:

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

UNIT - III

Disaster Preparedness and Management:

Preparedness: Monitoring of Phenomena Triggering ADisasteror Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT - IV

Risk Assessment Disaster Risk:

Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. TechniquesofRiskAssessment,GlobalCo-OperationinRiskAssessmentand Warning, People's Participation in Risk Assessment. Strategies for Survival.

UNIT - V

Disaster Mitigation:

Meaning, Conceptand Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

Suggested Reading

- $1. \quad R. Nishith, Singh AK, ``Disaster Management in India: Perspectives, is sue sand strategies$
- "New Royal book Company..Sahni,PardeepEt.Al.(Eds.),"DisasterMitigationExperiencesAndReflections",PrenticeHa Il OfIndia, New Delhi.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

3. GoelS.L.,DisasterAdministrationAndManagementTextAndCaseStudies",Deep&Deep Publication Pvt. Ltd., New Delhi

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	SANSKRITFOR TECHNICAL KNOWLEDGE	\mathbf{L}	T	P	C
21DAC101c		2	0	0	0
	Semester			I	
Course Objectives	s: This course will enable students:				
To get a we	orking knowledge in illustrious Sanskrit, the scientific lang	nage ir	the wo	rld	
•	f Sanskrit to improve brain functioning	uuge 11	i the wo	110	
•	Sanskrittodevelopthelogicinmathematics, science & othersul	oiects e	nhancin	g the	
memory po		5,000.50		8 1110	
¥ 1	eering scholars equipped with Sanskrit will be able to explo	re the l	huge		
-	e from ancientliterature		υ		
	(CO): Student will be able to				
Understand	ding basic Sanskrit language				
 Ancient Sa 	inskrit literature about science &technology can be understo	boc			
 Being a log 	gical language will help to develop logic in students				
UNIT - I					
Alphabets in Sans	krit,				
UNIT - II					
	e Tense, Simple Sentences				
UNIT - III					
Order, Introduction	n of roots				
UNIT - IV					
Technical informa	ation about Sanskrit Literature				
UNIT - V					
Technical concept	s of Engineering-Electrical, Mechanical, Architecture, Matl	hematic	es		
Suggested Readin	g				
	am" –Dr. Vishwas, Sanskrit-Bharti Publication, New D				
	elf Sanskrit" Prathama Deeksha- VempatiKutuml	bshastr	i, Rash	triyaSa	ınskri
· · · · · · · · · · · · · · · · · · ·	Delhi Publication				
3."India's Glorio	us ScientificTradition" Suresh Soni, Ocean books (P)	Ltd.,No	ew Dell	hi	

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

AUDIT COURSE-II

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008)

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	PEDAGOGY STUDIES	L	T	P	C
21DAC201a		2	0	0	0
	Semester		I	I	

Course Objectives: This course will enable students:

- Reviewexistingevidenceonthereviewtopictoinformprogrammedesignandpolicy making undertaken by the DfID, other agencies and researchers.
- Identify critical evidence gaps to guide the development.

Course Outcomes (CO): Student will be able to

Students will be able to understand:

- Whatpedagogical practices are being used byteachers informal and informal class rooms in developing countries?
- What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- Howcanteachereducation(curriculumandpracticum)andtheschoolcurriculumand guidance materials best support effective pedagogy?

UNIT - I

Introduction and Methodology: Aims and rationale, Policy back ground, Conceptual frame work and terminology Theories oflearning, Curriculum, Teachereducation. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT - II

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.

UNIT - III

Evidence on theeffectivenessofpedagogical practices, Methodology for the indepth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the scho curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.

UNIT - IV

Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head

teacherandthecommunity.Curriculumandassessment,Barrierstolearning:limitedresourcesand large class sizes

UNIT - V

Researchgapsandfuturedirections: Researchdesign, Contexts, Pedagogy, Teachereducation, Curriculum and assessment, Dissemination and research impact.

Suggested Reading

- 1. AckersJ,HardmanF(2001)ClassroominteractioninKenyanprimaryschools,Compare, 31 (2): 245-261.
- 2. AgrawalM(2004)Curricularreforminschools:Theimportanceofevaluation,Journalof
- 3. Curriculum Studies, 36 (3): 361-379.
- 4. AkyeampongK(2003) Teacher training in Ghana does it count? Multi-site teachereducation research project (MUSTER) country report 1. London: DFID.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

- 5. Akyeampong K, LussierK, PryorJ, Westbrook J (2013)Improving teaching and learning of basic maths and reading in Africa: Does teacherpreparation count?International Journal Educational Development, 33 (3): 272–282.
- 6. Alexander RJ(2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
 - Chavan M (2003)ReadIndia: A mass scale, rapid, 'learning to read'campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	CTDECC		7.4	L	T	P	C
21DAC201b	SIKESS	RESSMANAGEMENT BY YOGA		2	0	0	0
			Semester		I	I	
G 01: 4:	TDI:	11 11 , 1 ,					
Course Objecti	ves: This course wi	ii enable students:					
 To achie 	ve overall health of	f body and mind					
To over	come stres						
Course Outcom	es (CO): Student w	vill be able to					
	•	nealthy body thus improving	social health	also			
 Improve 	efficiency						
UNIT - I							
Definitions of I	Eight parts of yog.(A	Ashtanga)					
UNIT - II							
Yam and Niyan	1.						
UNIT - III							
Do`sand Don't'	sin life.						
		ryaand aparigrahaii)					
	n,tapa,swadhyay,ish	warpranidhan					
UNIT - IV							
Asan and Prana	yam						
UNIT - V							
	sesand theirbenefits	-					
		ques and its effects-Types of	oranayam				
Suggested Read		D . In I 1 C 'X	11 '34 1	1 37			
		Part-I": Janardan SwamiYog nternal Nature" by Swam					
	ation Department),		i vivekananu	u, Auv	arta		
A LOTH CHILLIA (1 CONC	ation Department),	Homuu					

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008)

ANANTHAPURAMU – 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING **COURSE STRUCTURE & SYLLABI**

Course Code	PERSONALIT	TY DEVELOPMENT THROUG	HLIFE	L	T	P	C
21DAC201c		NLIGHTENMENTSKILLS		2	0	0	0
		,	Semester	l e e e e e e e e e e e e e e e e e e e	Ι	I	
		will enable students:					
		ghest goal happily					
		stable mind, pleasing personality	and determ	nination			
	ken wisdom in stu						
	nes (CO): Studen						
		d-Geetawillhelpthestudentindevel	opinghispe	rsonalit	yand ac	chieve	
	est goal in life						
		ed Geetawilllead the nation and m			•	perity	
	i Neetishatakam v	vill help in developing versatile pe	ersonality of	of stude:	nts		
UNIT - I	TT 1' 4' 1 1						
	•	nent of personality					
-	20,21,22(wisdom)						
	31,32(pride &hero	oism)					
	28,63,65(virtue)						
UNIT - II							
	_	nent of personality					
Verses-52,	53,59(dont's)						
	73,75,78(do's)						
UNIT - III							
Approach to da	y to day work and	d duties.					
ShrimadBh	nagwadGeeta:Cha	pter2-Verses41,47,48,					
Chapter3-V	Verses 13, 21, 27, 35	,Chapter6-Verses5,13,17,23,35,					
	Verses45,46,48.						
UNIT - IV							
Statements of b	oasic knowledge.						
ShrimadBh	agwadGeeta:Cha	pter2-Verses 56,62,68					
Chapter12	-Verses 13, 14, 15, 1	16,17,18					
Personality	of Rolemodel. Sl	hrimad Bhagwad Geeta:					
UNIT - V							
Chapter2-V	erses 17, Chapter	3-Verses 36, 37, 42,					
Chapter4-V	Verses 18,38,39						
Chapter 18-	- Verses37,38,63						
Suggested Read							
	ıvadGita"bySwan	niSwarupanandaAdvaitaAshram(P	ublication	Departn	nent),		
Kolkata				. ~			
		iti-sringar-vairagya) by P.Gopina	ath, Rashtr	1yaSan	skrit		
Sansthanam,	new Delhi.						

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

OPEN ELECTIVE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008)

ANANTHAPURAMU – 515 002 (A.P.) INDIA

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	COST MANAGEMENT OF ENGINEERING	L	T	P	C
21DOE301a	PROJECTS	3	0	0	3
	Semester			I	

Course Objectives:

- To explain cost concepts and objectives of costing system and cost management process
- To provide knowledge and explain Cost behaviour in relation to Volume and Profit and pricing decisions.
- To know the concepts of target costing, life cycle costing and activity based cost management in a project or business.
- To discuss on budget and budgetary control, type of budgets in a business to control costs
- To provide knowledge on project, types of projects, stages of project execution, types of project contracts and project cost control.

Course Outcomes (CO): Student will be able to

- Know the cost management process and types of costs
- Learn and apply different costing methods under different project contracts
- To understand relationship of Cost-Volume and Profit and pricing decisions.
- Prepare budgets and measurement of divisional performance.
- Acquires knowledge on various types of project contracts, stages to execute projects and controlling project cost..

UNIT - I Lecture Hrs:10

Introduction and Overview of the Strategic Cost Management Process - Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

UNIT - II Lecture Hrs:12

Cost Behavior and Profit Planning: Marginal Costing- Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems; Pareto Analysis Just-in-time approach, Theory of constraints.; Divisional performance management: - Measurement of Divisional profitability - pricing decisions - transfer pricing.

UNIT - III Lecture Hrs:10

Target costing- Life Cycle Costing - Activity-Based Cost management:- Activity based costing-Value-Chain Analysis- Bench Marking; Balanced Score Card.

UNIT - IV Lecture Hrs:10

Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT - V Lecture Hrs:12

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

Textbooks:

- 1. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 2. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

publisher

Reference Books:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd

Online Learning Resources:

https://nptel.ac.in/courses/105/104/105104161/

https://nptel.ac.in/courses/112/102/112102106/

Reference Books:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008)

ANANTHAPURAMU - 515 002 (A.P) INDIA

M.TECH. IN STRUCTURAL ENGINEERING **COURSE STRUCTURE & SYLLABI**

Course Code	INDUSTRIAL SAFETY	L	T	P	C
21DOE301b		3	0	0	3
	Semester			III	
Course Object					
	w about Industrial safety programs and toxicology, Industrial laws	, regula	tions and	source	
models					
	erstand about fire and explosion, preventive methods, relief and its	sizing r	nethods		
	yse industrial hazards and its risk assessment.				
	nes (CO): Student will be able to				
	out important legislations related to health, Safety and Environmen				
	out requirements mentioned in factories act for the prevention of ac	codents	•		
	erstand the health and welfare provisions given in factories act.		T .	**	
UNIT - I	A '1	11	Lecture		
	7: Accident, causes, types, results and control, mechanical and ele				
	steps/procedure, describe salient points of factories act 1948 for he				
	layouts, light, cleanliness, fire, guarding, pressure vessels, et firefighting, equipment and methods.	c, Saie	ty color	codes.	Fire
UNIT - II	menghing, equipment and methods.		Lecture	Llra.	
	of maintenance engineering: Definition and aim of maintenance	o ongin			and
	ctions and responsibility of maintenance department, Types of				
	tools used for maintenance, Maintenance cost & its relation with re-				
life of equipmen		ріассії	chi econo	my, se	IVICC
UNIT - III	11.		Lecture	Hrs	
	osion and their prevention: Wear- types, causes, effects, wear re	duction			ants-
	cations, Lubrication methods, general sketch, working andapplications				
	e grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. W				
	n, vii. Ring lubrication, Definition, principle and factors affect				
	sion prevention methods.	U		J 1	
UNIT - IV			Lecture	Hrs:	
Fault tracing: F	ault tracing-concept and importance, decision treeconcept, need a	ınd appl	ications,	sequen	ce of
fault finding ac	tivities, show as decision tree, draw decision tree for problems	in macl	nine tools	, ĥydra	aulic,
pneumatic, auto	omotive, thermal and electrical equipment's like, I. Any one ma	chine to	ool, ii. Pu	ımp iii	. Aiı
	Internal combustion engine, v. Boiler, vi. Electrical motors, Typ	es of fa	ults in ma	achine	tools
and their genera	l causes.				
UNIT - V			Lecture		
	eventive maintenance: Periodic inspection-concept and need, degree				
	auling of mechanical components, overhauling of electrical m				
	ctric motor, repair complexities and its use, definition, need, steps				
	reps/procedure for periodic and preventive maintenance of: I. Mac				
	. Diesel generating (DG) sets, Program and schedule of preventive				nıcal
	quipment, advantages of preventive maintenance. Repair cycle con-	cept and	ı ımportar	nce	
Textbooks:			•		
	tenance Engineering Handbook, Higgins & Morrow, Da Informati	on Serv	ices.		
2. Main	tenance Engineering, H. P. Garg, S. Chand and Company.				

1.Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
2. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

M.TECH. IN STRUCTURAL ENGINEERING COURSE STRUCTURE & SYLLABI

Course Code	BUSINESS ANALYTICS	L	T	P	С
21DOE301c		3	0	0	3
	Semester			III	
Course Object					
	in objective of this course is to give the student a comprehensive ur	nderstan	ding of	Ī	
busines	s analytics methods.				
Course Outcor	nes (CO): Student will be able to				
	ts will demonstrate knowledge of data analytics.				
 Studen 	ts will demonstrate the ability of think critically in making decisions	s based o	on		
data an	d deep analytics.				
 Studen 	ts will demonstrate the ability to use technical skills in predicative a	nd			
	otive modeling to support business decision-making.				
	ts will demonstrate the ability to translate data into clear, actionable	insights			
UNIT - I				ıre Hrs	
	sis: Overview of Business Analysis, Overview of Requirements, Ro			ness Ar	ıalyst.
Stakeholders: tl	ne project team, management, and the front line, Handling Stakehold	der Con	flicts.		
UNIT - II				ıre Hrs	
Life Cycles: Sy	ystems Development Life Cycles, Project Life Cycles, Product Life	e Cycle	s, Req	uireme	nt Life
Cycles.					
UNIT - III			Lecti	ıre Hrs	:
Forming Requi	rements: Overview of Requirements, Attributes of Good Requirements	ents, Tyr	oes of l	Require	ements,
	Sources, Gathering Requirements from Stakeholders, Common				
	Requirements: Stakeholder Needs Analysis, Decomposition An				
Analysis, Gap	Analysis, Notations (UML & BPMN), Flowcharts, Swim Lane Flo	wcharts.	, Entity	-Relat	ionship
	e-Transition Diagrams, Data Flow Diagrams, Use Case Modeling, B	usiness	Proces	s Mod	eling
UNIT - IV				ire Hrs	
	uirements: Presenting Requirements, Socializing Requirements				ptance,
Prioritizing Red	quirements. Managing Requirements Assets: Change Control, Requi	irements	Tools		
UNIT - V			Lecti	ıre Hrs	:
Recent Trands	in: Embedded and colleborative business intelligence, Visual data	recover	ry, Dat	a Story	telling
and Data Journ			•	•	
Textbooks:					
	ss Analysis by James Cadle et al.				
2. Project	Management: The Managerial Process by Erik Larson and, Clifford	l Gray			
Reference Boo	ks:				
1. Busine	ss analytics Principles, Concepts, and Applications by Marc J. Schn	iederjan	s, Dara	ı G.	
	derjans, Christopher M. Starkey, Pearson FT Press.	•			

2. Business Analytics by James Evans, persons Education.