

Jawaharlal Nehru Technological University Anantapur

(Established by Govt. of A.P., Act. No. 30 of 2008)

Ananthapuramu-515 002 (A.P) India

Four Year B.Tech.
Course Structure and Syllabi
under R20 Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

Semester-0

Induction Program: 3 weeks (Common for All Branches of Engineering)

S.No	Course Name	Category	L-T-P-C
1	Physical Activities Sports, Yoga and Meditation, Plantation	MC	0-0-6-0
2	Career Counselling	MC	2-0-2-0
3	Orientation to all branches career options, tools, etc.	MC	3-0-0-0
4	Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5	Proficiency Modules & Productivity Tools	ES	2-1-2-0
6	Assessment on basic aptitude and mathematical skills	MC	2-0-3-0
7	Remedial Training in Foundation Courses	MC	2-1-2-0
8	Human Values & Professional Ethics	MC	3-0-0-0
9	Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10	Concepts of Programming	ES	2-0-2-0

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTAPUR – 515 002 (A.P) INDIA

COMPUTER SCIENCE & DESIGN

	Semester - 1 (Theory - 5, Lab - 4)								
S.No	Course No	Course Name	Category	L-T-P	Credits				
1.	20A54101	Linear Algebra and Calculus	BS	3-0-0	3				
2.	20A51101T	Chemistry	BS	3-0-0	3				
3.	20A05201T	C-Programming & Data Structures	ES	3-0-0	3				
4.	20A02101T	Basic Electrical & Electronics Engineering	ES	3-0-0	3				
5.	20A03202	Engineering Workshop	LC	0-0-3	1.5				
6.	20A05202	IT Workshop	LC	0-0-3	1.5				
7.	20A51101P	Chemistry Lab	BS	0-0-3	1.5				
8.	20A05201P	C-Programming & Data Structures Lab	ES	0-0-3	1.5				
9.	20A02101P	Basic Electrical & Electronics Engineering Lab	ES	0-0-2	1.5				
		1		Total	19.5				

	Semester – 2 (Theory – 5, Lab – 5)							
S.No	Course No	Course Name	Category	L-T-P/D	Credits			
1.	20A54202	Probability & Statistics	BS	3-0-0	3			
2.		Applied Physics	BS	3-0-0	3			
3.		Communicative English	HS	3-0-0	3			
4.	20A05101T	Python Programming & Data Science	ES	3-0-0	3			
5.	20A03101T	Engineering Drawing	ES	1-0-0/2	2			
6.		Engineering Graphics Lab	ES	0-0-2	1			
7.	20A52101P	Communicative English Lab	HS	0-0-3	1.5			
8.		Applied Physics Lab	BS	0-0-3	1.5			
9.	20A05101P	Python Programming & Data Science Lab	ES	0-0-3	1.5			
				Total	19.5			

	Semester-III							
S.No	CourseCode	Course Name	L	Т	P	Credits		
1.	20A54304	Discrete Mathematics& Graph Theory	3	0	0	3		
2.	20A38301T	Digital Logic Design & Computer Organization	3	0	0	3		
3.	20A05301T	Advanced Data Structures & Algorithms	3	0	0	3		
4.	20A05302T	Object Oriented Programming Through Java	3	0	0	3		
5.	20A38302	Human Computer Interaction	3	0	0	3		
6.	20A38301P	Digital Logic Design & Computer Organization Lab	0	0	3	1.5		
7.	20A05301P	Advanced Data Structures & Algorithms Lab	0	0	3	1.5		
8.	20A05302P	Object Oriented Programming Through Java Lab	0	0	3	1.5		
9.	20A52201	Universal Human Values	3	0	0	3		
10.	20A38303	Skill Oriented Course – I Digital Photography using Adobe Photoshop	1	0	2	2		
			· '		Total	24.5		

Semester-IV						
S.No	Course	Course name	L	T	P	Credits
	Code					
1.	20A54406	Mathematical Modeling and Simulation	3	0	0	3
2.	20A05401T	Database Management Systems	3	0	0	3
3.	20A05402T	Operating Systems	3	0	0	3
4.	20A38401T	Visual Design & Communication	3	0	0	3
5.		Humanities Elective– I	3	0	0	3
	20A52301	Managerial Economics & Financial Analysis				
	20A52302	Organizational Behaviour				
	20A52303	Business Environment				
6.	20A05401P	Database Management Systems Lab	0	0	3	1.5
7.	20A05402P	Operating Systems Lab	0	0	3	1.5
8.	20A38401P	Visual Design & Communication Lab	0	0	3	1.5
9.		Skill Oriented Course– II	1	0	2	2
	20A05404	Exploratory Data Analysis with R				
10.		Non credit Mandatory Course	2	0	0	0
	20A99401	Design Thinking for Innovation				
	•				Total	21.5

Note:

- 1. Eligible and interested students can register either for Honors or for a Minor in IV Semester as per the guidelines issued by the University
- 2. Students shall register for NCC/NSS/NSO activities and will be required to participate in an activity for two hours in a week during third semester.
- 3. Lateral entry students shall undergo a bridge course in Mathematics during third semester

	Semester-V					
S.No.	Course Code	Course Name	L	T	P	Credits
1.	20A38501	Automata Theory and Compiler Design	3	0	0	3
2.	20A38502T	Multimedia Application Development	3	0	0	3
3.	20A38503T	Design of Interactive Systems	3	0	0	3
4.	20A38504a 20A38504b 20A38504c	Professional Elective Course – I Aesthetics and art Computer game design and programming Film Making and Radio Podcasting	3	0	0	3
5.		Open Elective Course – I	3	0	0	3
6.	20A38502P	Multimedia Application Development Lab	0	0	3	1.5
7.	20A38503P	Design of Interactive systems Lab	0	0	3	1.5
8.	20A38505	Skill oriented course – III Django Web Framework	1	0	2	2
9	20A38506	Evaluation of Community Service Project				1.5
10.	20A99201	Mandatory noncredit course Environmental Science				
	Total					

Open Elective-I

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01505	Building Technology	CE
2	20A02505	Electric Vehicles	EEE
3	20A03505	3D Printing Technology	ME
4	20A04507	MATLAB Programming for Engineers	ECE/EEE
5	20A04508	Introduction to Control Systems	ECE/EEE
6	20A27505	Computer Applications in Food Processing	FT
7	20A54501	Optimization Techniques	Mathematics
8	20A56501	Materials Characterization Techniques	Physics
9	20A51501	Chemistry of Energy Materials	Chemistry

Note:

- 1. A student is permitted to register for Honours or a Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.
- 2. A student shall not be permitted to take courses as Open Electives/Minor/Honours with content substantially equivalent to the courses pursued in the student's primary major.
- 3. A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline

	Semester-VI						
S.No	Course Code	Course Name	L	T	P	Credits	
1.	20A05602T	Machine Learning	3	0	0	3	
2.	20A05502T	Artificial Intelligence	3	0	0	3	
3.	20A05501T	Computer Networks	3	0	0	3	
4.		Professional Elective Course– II	3	0	0	3	
	20A38601a	Software Engineering					
	20A05604c	Computer Vision					
	20A38601b	Computer Graphics & Animation					
5.		Open Elective Course – II	3	0	0	3	
6.	20A05602P	Machine Learning Lab	0	0	3	1.5	
7.	20A05501P	Computer Networks Lab	0	0	3	1.5	
8.	20A05502P	Artificial Intelligence Lab	0	0	3	1.5	
9.		Skill oriented course - IV	1	0	2	2	
	20A52401	Soft Skills					
10.	20A99601	Mandatory Non-credit Course Intellectual Property Rights & Patents	2	0	0	0	
	Total						
	Industry Internship (Mandatory) for 6 – 8 weeks duration during summer vacation						

Open Elective-II

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01605	Environmental Economics	CE
2	20A02605	Smart Electric Grid	EEE
3	20A03605	Introduction to Robotics	ME
4	20A04605	Signal Processing	ECE
5	20A04606	Basic VLSI Design	ECE
6	20A27605	Food Refrigeration and Cold Chain Management	FT
7	20A54701	Wavelet Transforms & its applications	Mathematics
8	20A56701	Physics Of Electronic Materials and Devices	Physics
9	20A51701	Chemistry of Polymers and its Applications	Chemistry

		Semester-VII				
S.No.	Course Code	Course Name	L	T	P	Credit
1.		Professional Elective Course– III	3	0	0	3
	20A05701a	Cloud Computing				
	20A05703c	Deep Learning				
	20A05603T	Internet of Things				
2.		Professional Elective Course– IV	3	0	0	3
	20A38701a	Usability studies and evaluation				
	20A38701b	Animation Principles and design				
	20A38701c	Digital audio design and synthesis				
3.		Professional Elective Course- V	3	0	0	3
	20A05703a	Full Stack Development				
	20A05703b	Blockchain Technology and Applications				
	20A05702a	Fundamentals of AR/VR				
4.		Humanities Elective – II	3	0	0	3
	20A52701a	Entrepreneurship and Incubation				
	20A52701b	Management Science				
	20A52701c	Enterprise Resource Planning				
5.		Open Elective Course – III	3	0	0	3
6.		Open Elective Course – IV	3	0	0	3
7.		Skill oriented course – V	1	0	2	2
	20A05706	Mobile Application Development				
8.	20A38702	Evaluation of Industry Internship				3
		·	•	Total		23

Open Elective-III

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01704	Cost Effective Housing Techniques	CE
2	20A02704	IOT Applications in Electrical Engineering	EEE
3	20A03704	Product Design & Development	ME
4	20A04705	Electronic Sensors	ECE
5	20A04506	Principles of Communication Systems	ECE
6	20A27704	Human Nutrition	FT
7	20A54702	Numerical Methods for Engineers	Mathematics
8	20A56702	Sensors And Actuators for Engineering Applications	Physics
9	20A51702	Chemistry of Nanomaterials and Applications	Chemistry

Open Elective-IV

S.No	Course Code	Course Name	Offered by the Dept.
1	20A01705	Health, Safety & Environmental management	CE
2	20A02705	Renewable Energy Systems	EEE
3	20A03705	Introduction to Composite Materials	ME
4	20A04706	Microcontrollers and Applications	ECE
5	20A04706	Principles of Cellular & Mobile Communications	ECE
6	20A27705	Waste and Effluent Management	FT
7	20A54703	Number theory & its applications	Mathematics
8	20A56703	Smart Materials and Devices	Physics
9	20A51703	Green Chemistry and Catalysis for Sustainable	Chemistry

Semester-VIII								
S.No.	Course Code	Course Name	Category	L	T	P	Credits	
1.	20A38801	Full Internship & Project work	PR				12	
		1				Total	12	

COURSES OFFERED FOR HONOURS DEGREE IN CSD

S.No.	Code	Course Name	Contact Hours per week		Credits
			L	T	
1	20A38H01	Spatial and Multimedia Databases	3	1	4
2	20A38H02	Design for User Experience	3	1	4
3	20A38H03	Digital Audio & Video Production Workflow	3	1	4
4	20A38H04	Information Security	3	1	4
5	20A38H05	MOOC-1			2
6	20A38H06	MOOC-2			2

Suggested MOOCs:

- 1. Elements of Visual Programming
- 2. Fundamentals of 3D printing
- 3. Introduction to Multimedia Processing

Minor Title

4. Animations

S.No.

5. Data Visualization

LIST OF MINORS OFFERED TO CSD

Department offering the Minor

1.	Construction Technology	Civil Engineering
2.	Environmental Geotechnology	Civil Engineering
3.	Energy Systems	EEE
4.	3D Printing	ME
5.	Industrial Engineering	ME
6.	Food Science	Food Technology

B.Tech - (CSD) - I Sem

L T P C 3 0 0 3

(20A54101) LINEAR ALGEBRA & CALCULUS

(Common to All Branches of Engineering)

Course Objectives:

- This course will illuminate the students in the concepts of calculus and linear algebra.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

UNIT -1

Matrices

Rank of a matrix by echelon form, normal form. Solving system of homogeneous and non-homogeneous equations linear equations. Eigen values and Eigenvectors and their properties, Cayley-Hamilton theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton theorem, diagonalisation of a matrix.

Learning Outcomes:

At the end of this unit, the student will be able to

- Solving systems of linear equations, using technology to facilitate row reduction determine the rank, eigen values and eigenvectors (L3).
- Identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics; (L3)

UNIT -2

Mean Value Theorems

Rolle's Theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof) related problems.

Learning Outcomes:

At the end of this unit, the student will be able to

- Translate the given function as series of Taylor's and Maclaurin's with remainders (L3)
- Analyze the behaviour of functions by using mean value theorems (L3)

UNIT -3

Multivariable Calculus

Partial derivatives, total derivatives, chain rule, change of variables, Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

Learning Outcomes:

At the end of this unit, the student will be able to

- Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L3)
- Acquire the Knowledge maxima and minima of functions of several variable (L1)
- Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)

UNIT -4

Multiple Integrals

Double integrals, change of order of integration, change of variables. Evaluation of triple integrals, change of variables between Cartesian, cylindrical and spherical polar co-ordinates. Finding areas and volumes using double and triple integrals.

Learning Outcomes:

At the end of this unit, the student will be able to

- Evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates (L5)
- Apply double integration techniques in evaluating areas bounded by region (L4)
- Evaluate multiple integrals in Cartesian, cylindrical and spherical geometries (L5)

UNIT -5

Beta and Gamma functions

Beta and Gamma functions and their properties, relation between beta and gamma functions, evaluation of definite integrals using beta and gamma functions.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand beta and gamma functions and its relations (L2)
- Conclude the use of special function in evaluating definite integrals (L4)

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.

Reference Books:

- 1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.
- 2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 4/e, Pearson publishers, 2011.

- 4. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 5. Dean G. Duffy, Advanced Engineering Mathematics with MATLAB, CRC Press
- 6. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 7. R.L. Garg Nishu Gupta, Engineering Mathematics Volumes-I &II, Pearson Education
- 8. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education
- 9. H. k Das, Er. RajnishVerma, Higher Engineering Mathematics, S. Chand.
- 10. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Course Outcomes:

At the end of the course, the student will be able to

- Develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- Utilize mean value theorems to real life problems (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional coordinate systems (L5)
- Students will become familiar with 3- dimensional coordinate systems and also learn the utilization of special functions

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – I Sem L T P C 3 0 0 3

(20A51101T) CHEMISTRY

(CSE, AI & DS, CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT, ECE, EEE and IT)

Course Objectives:

- To familiarize engineering chemistry and its applications
- To train the students on the principles and applications of electrochemistry and polymers
- To introduce instrumental methods, molecular machines and switches

Unit 1: Structure and Bonding Models:

Planck's quantum theory, dual nature of matter, Schrodinger equation, significance of Ψ and Ψ^2 , applications to hydrogen, molecular orbital theory – bonding in homo- and heteronuclear diatomic molecules – energy level diagrams of O₂ and CO, etc. π -molecular orbitals of butadiene and benzene, calculation ofbond order.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Schrodinger wave equation to hydrogen atom (L3)
 - Illustrate the molecular orbital energy level diagram of different molecular species (L2)
 - Explain the calculation of bond order of O₂ and Co molecules (L2)
 - Discuss the basic concept of molecular orbital theory (L3)

Unit 2: Modern Engineering materials:

Coordination compounds: Crystal field theory – salient features – splitting in octahedral and tetrahedral geometry. Properties of coordination compounds-Oxidation state, coordination, magnetic and colour.

Semiconductor materials, super conductors- basic concept, band diagrams for conductors, semiconductors and insulators, Effect of doping on band structures.

Supercapacitors: Introduction, Basic concept-Classification – Applications.

Nanochemistry: Introduction, classification of nanometerials, properties and applications of Fullerenes, carbonnano tubes and Graphines nanoparticles.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain splitting in octahedral and tetrahedral geometryof complexes (L2).
- Discuss the magnetic behaviour and colour of coordination compounds (L3).
- Explain the band theory of solids for conductors, semiconductors and insulators (L2)

• Demonstrate the application of Fullerenes, carbon nano tubes and Graphines nanoparticles (L2).

Unit 3: Electrochemistry and Applications:

Electrodes – concepts, reference electrodes (Calomel electrode, Ag/AgCl electrode and glass electrode); Electrochemical cell, Nernst equation, cell potential calculations and numerical problems, potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductivity cell, conductometric titrations (acid-base titrations).

Electrochemical sensors – potentiometric sensors with examples, amperometric sensors with examples.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteries- working of the batteries including cell reactions; Fuel cells, hydrogen-oxygen, methanol fuel cells – working of the cells.

Learning Outcomes:

At the end of this unit, the students will be able to

- Apply Nernst equation for calculating electrode and cell potentials (L3)
- Differentiate between ph metry, potentiometric and conductometric titrations (L2)
- Explain the theory of construction of battery and fuel cells (L2)
- Solve problems based on cell potential (L3)

Unit 4: Polymer Chemistry:

Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization, copolymerization (stereospecific polymerization) with specific examples and mechanisms of polymer formation.

Plastics - Thermoplastics and Thermosettings, Preparation, properties and applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.

Elastomers-Buna-S, Buna-N-preparation, properties and applications.

Conducting polymers – polyacetylene, polyaniline, polypyrroles – mechanism of conduction and applications.

Learning Outcomes:

At the end of this unit, the students will be able to

- Explain the different types of polymers and their applications (L2)
- Explain the preparation, properties and applications of Bakelite, Nylon-6,6, and carbon fibres (L2)
- Describe the mechanism of conduction in conducting polymers (L2)
- Discuss Buna-S and Buna-N elastomers and their applications (L2)

Unit 5: Instrumental Methods and Applications

Electromagnetic spectrum. Absorption of radiation: Beer-Lambert's law. Principle and applications of pH metry, UV-Visible,IR Spectroscopies. Solid-Liquid Chromatography—TLC, retention time.

Learning outcomes:

After completion of Unit IV, students will be able to:

- Explain the different types of spectral series in electromagnetic spectrum (L2)
- Understand the principles of different analytical instruments (L2)
- Explain the different applications of analytical instruments (L2)

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. G.V.Subba Reddy, K.N.Jayaveera and C. Ramachandraiah, Engineering Chemistry, Mc Graw Hill, 2020.
- 2. D. Lee, Concise Inorganic Chemistry, 5/e, Oxford University Press, 2008.
- 3. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 4. J.M.Lehn, Supra Molecular Chemistry, VCH Publications

Course Outcomes:

At the end of the course, the students will be able to:

- Compare the materials of construction for battery and electrochemical sensors (12)
- Explain the preparation, properties, and applications of thermoplastics &thermosetting, elastomers& conducting polymers. (12)
- Explain the principles of spectrometry, slc in separation of solid and liquid mixtures (12)
- Apply the principle of Band diagrams in application of conductors and semiconductors (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech - (CSD) - I Sem L T P C 3 0 0 3

(20A05201T) C-PROGRAMMING & DATA STRUCTURES

(Common to All Branches of Engineering)

Course Objectives:

- To illustrate the basic concepts of C programming language.
- To discuss the concepts of Functions, Arrays, Pointers and Structures.
- To familiarize with Stack, Queue and Linked lists data structures.
- To explain the concepts of non-linear data structures like graphs and trees.
- To learn different types of searching and sorting techniques.

UNIT-1

Introduction to C Language - C language elements, variable declarations and data types, operators and expressions, decision statements - If and switch statements, loop control statements - while, for, do-while statements, arrays.

Learning outcomes:

At the end of this unit, the students will be able to

- Use C basic concepts to write simple C programs. (L3)
- Use iterative statements for writing the C programs (L3)
- Use arrays to process multiple homogeneous data. (L3)
- Test and execute the programs and correct syntax and logical errors. (L4)
- Translate algorithms into programs. (L4)
- Implement conditional branching, iteration and recursion. (L2)

UNIT - 2

Functions, types of functions, Recursion and argument passing, pointers, storage allocation, pointers to functions, expressions involving pointers, Storage classes – auto, register, static, extern, Structures, Unions, Strings, string handling functions, and Command line arguments.

Learning outcomes:

At the end of this unit, the students will be able to

- Writing structured programs using C Functions. (L5)
- Writing C programs using various storage classes to control variable access. (L5)
- Apply String handling functions and pointers. (L3)
- Use arrays, pointers and structures to formulate algorithms and write programs.(L3)

UNIT-3

Data Structures, Overview of data structures, stacks and queues, representation of a stack, stack related terms, operations on a stack, implementation of a stack, evaluation of arithmetic expressions, infix, prefix, and postfix notations, evaluation of postfix expression, conversion of expression from infix to postfix, recursion, queues - various positions of queue, representation of queue, insertion, deletion, searching operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Describe the operations of Stack. (L2)
- Explain the different notations of arithmetic expression. (L5)
- Develop various operations on Queues. (L6)

UNIT - 4

Linked Lists – Singly linked list, dynamically linked stacks and queues, polynomials using singly linked lists, using circularly linked lists, insertion, deletion and searching operations, doubly linked lists and its operations, circular linked lists and its operations.

Learning outcomes:

At the end of this unit, the students will be able to

- Analyze various operations on singly linked list. (L4)
- Interpret operations of doubly linked lists. (L2)
- Apply various operations on Circular linked lists. (L6)

UNIT-5

Trees - Tree terminology, representation, Binary trees, representation, binary tree traversals. binary tree operations, **Graphs** - graph terminology, graph representation, elementary graph operations, Breadth First Search (BFS) and Depth First Search (DFS), connected components, spanning trees. **Searching and Sorting** – sequential search, binary search, exchange (bubble) sort, selection sort, insertion sort.

Learning outcomes:

At the end of this unit, the students will be able to

- Develop the representation of Tress. (L3)
- Identify the various Binary tree traversals. (L3)
- Illustrate different Graph traversals like BFS and DFS. (L2)
- Design the different sorting techniques (L6)
- Apply programming to solve searching and sorting problems. (L3)

Text Books:

- 1. The C Programming Language, Brian W Kernighan and Dennis M Ritchie, Second Edition, Prentice Hall Publication.
- 2. Fundamentals of Data Structures in C, Ellis Horowitz, SartajSahni, Susan Anderson-Freed, Computer Science Press.
- 3. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. AnandaRao, Pearson Education.
- 4. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 5. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. Pradip Dey and Manas Ghosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E. Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K. Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T. Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes:

- 1. Analyse the basicconcepts of C Programming language. (L4)
- 2. Design applications in C, using functions, arrays, pointers and structures. (L6)
- 3. Apply the concepts of Stacks and Queues in solving the problems. (L3)
- 4. Explore various operations on Linked lists. (L5)
- 5. Demonstrate various tree traversals and graph traversal techniques. (L2)
- 6. Design searching and sorting methods (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech - (CSD) – I Sem L T P C 3 0 0 3

(20A02101T) BASIC ELECTRICAL & ELECTRONICS ENGINEERING (Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Basic Electrical Engineering

Course Objectives:

- To introduce basics of electric circuits.
- To teach DC and AC electrical circuit analysis.
- To explain working principles of transformers and electrical machines.
- To impart knowledge on Power system generation, transmission and distribution

UNIT-1

DC & AC Circuits:

Electrical circuit elements (R - L and C) - Kirchhoff laws - Series and parallel connection of resistances with DC excitation. Superposition Theorem - Representation of sinusoidal waveforms - peak and rms values - phasor representation - real power - reactive power - apparent power - power factor - Analysis of single-phase ac circuits consisting of RL - RC - RLC series circuits, Resonance.

Learning Outcomes

At the end of this unit, the student will be able to

- Recall Kirchoff laws
- Analyze simple electric circuits with DC excitation
- Apply network theorems to simple circuits
- Analyze single phase AC circuits consisting of series RL RC RLC combinations

UNIT -2

DC & AC Machines:

Principle and operation of DC Generator - EMF equations - OCC characteristics of DC generator - principle and operation of DC Motor - Performance Characteristics of DC Motor - Speed control of DC Motor - Principle and operation of Single Phase Transformer - OC and SC tests on transformer - Principle and operation of 3-phase AC machines [Elementary treatment only]

Learning Outcomes

At the end of this unit, the student will be able to

- Explain principle and operation of DC Generator & Motor.
- Perform speed control of DC Motor
- Explain operation of transformer and induction motor.
- Explain construction & working of induction motor DC motor

UNIT -3

Basics of Power Systems:

Layout & operation of Hydro, Thermal, Nuclear Stations - Solar & wind generating stations - Typical AC Power Supply scheme - Elements of Transmission line - Types of Distribution systems: Primary & Secondary distribution systems.

Learning Outcomes

At the end of this unit, the student will be able to

- Understand working operation of various generating stations
- Explain the types of Transmission and Distribution systems

Text Books:

- 1. D. P. Kothari and I. J. Nagrath "Basic Electrical Engineering" Tata McGraw Hill 2010.
 - 2. V.K. Mehta & Rohit Mehta, "Principles of Power System" S.Chand 2018.

References:

- 1. L. S. Bobrow "Fundamentals of Electrical Engineering" Oxford University Press 2011.
 - 2. E. Hughes "Electrical and Electronics Technology" Pearson 2010.
 - 3. C.L. Wadhwa "Generation Distribution and Utilization of Electrical Energy", 3rd Edition, New Age International Publications.

Course Outcomes:

The student should be able to

- Apply concepts of KVL/KCL in solving DC circuits
- Understand and choose correct rating of a transformer for a specific application
- Illustrate working principles of DC Motor
- Identify type of electrical machine based on their operation
- Understand the basics of Power generation, Transmission and Distribution

Part 'B'- Electronics Engineering

COURSE OBJECTIVES

- Understand principles and terminology of electronics.
- Familiar with the theory, construction, and operation of electronic devices.
- Learn about biasing of BJTs and FETs.
- Design and construct amplifiers.
- Understand the concept & principles of logic devices.

Unit-1:

Diodes and Applications: Semiconductor Diode, Diode as a Switch& Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Operation and Applications of Zener Diode, LED, Photo Diode.

Transistor Characteristics: Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations, Operating Point, Biasing of Transistor Configuration; Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Concepts of Small Signal Amplifiers –CE & CC Amplifiers.

Learning outcomes:

At the end of this unit, the student will be able to

- Remember and understand the basic characteristics of semiconductor diode. (L1)
- Understand principle of operation of Zener diode and other special semiconductor diodes. (L1)
- Analyze BJT based biasing circuits. (L3)
- Design an amplifier using BJT based on the given specifications. (L4)

Unit-2:

Operational Amplifiers and Applications: Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground; Op-Amp Applications - Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.

Learning outcomes:

At the end of this unit, the student will be able to

- Describe operation of Op-Amp based linear application circuits, converters, amplifiers and non-linear circuits. (L2)
- Analyze Op-Amp based comparator, differentiator and integrator circuits. (L3)

Unit-3:

Digital Electronics: Logic Gates, Simple combinational circuits—Half and Full Adders, BCD Adder. Latches and Flip-Flops (S-R, JK andD), Shift Registers and Counters. Introduction to Microcontrollers and their applications (Block diagram approach only).

Learning outcomes:

At the end of this unit, the student will be able to

- Explain the functionality of logic gates. (L2)
- Apply basic laws and De Morgan's theorems to simplify Boolean expressions. (L3)
- Analyze standard combinational and sequential circuits. (L4)
- Distinguish between 8085 & 8086 microprocessors also summarize features of a microprocessor. (L5)

Text Books:

- 1. R.L.Boylestad& Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2007.
- 2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4thEdition, Pearson, 2017.
- 3. R. P. Jain, Modern Digital Electronics, 3rd Edition, Tata Mcgraw Hill, 2003.
- 4. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Edition, Pearson, 2012.

Reference Books:

- 1. SantiramKal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- 2. R. S. Sedha, A Text Book of Electronic Devices and Circuits, S.Chand& Co,2010.
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

COURSE OUTCOMES:

After the completion of the course students will able to

- Explain the theory, construction, and operation of electronic devices.
- Apply the concept of science and mathematics to explain the working of diodes and its applications, working of transistor and to solve the simple problems based on the applications
- Analyze small signal amplifier circuits to find the amplifier parameters
- Design small signal amplifiers using proper biasing circuits to fix up proper Q point.
- Distinguish features of different active devices including Microprocessors.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – I Sem L T P C 0 0 3 1.5

(20A03202) ENGINEERING WORKSHOP

(Common to All Branches of Engineering)

Course Objective:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

List of Topics

Wood Working:

Familiarity with different types of woods and tools used in wood working and make following joints

a) Half – Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint

Sheet Metal Working:

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets

a) Tapered tray b) Conical funnel c) Elbow pipe d) Brazing

Fitting:

Familiarity with different types of tools used in fitting and do the following fitting exercises a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two wheeler tyre

Electrical Wiring:

Familiarities with different types of basic electrical circuits and make the following connections

- a) Parallel and series b) Two way switch c) Godown lighting
- d) Tube light e) Three phase motor f) Soldering of wires

Course Outcomes:

After completion of this lab the student will be able to

- Apply wood working skills in real world applications. (13)
- Build different objects with metal sheets in real world applications. (13)
- Apply fitting operations in various applications. (13)
- Apply different types of basic electric circuit connections. (13)
- Use soldering and brazing techniques. (12)

Note: In each section a minimum of three exercises are to be carried out.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech - (CSD) - I Sem L T P C 0 0 3 1.5

(20A05202) IT WORKSHOP

(Common to All Branches of Engineering)

Course Objectives:

- To make the students know about the internal parts of a computer, assembling and dissembling a computer from the parts, preparing a computer for use by installing the operating system
- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations and LAteX
- To learn about Networking of computers and use Internet facility for Browsing and Searching

Preparing your Computer

Task 1:

Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2:

Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods

Task 3:

Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4:

Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet

Task 5:

Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc. should be done by the student. The entire process has to be documented.

Task 6:

Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc. If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating e-mail account.

Task 7:

Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools

Task 8:

Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered, Image Manipulation tools.

Task 9:

Presentations: creating, opening, saving and running the presentations, selecting the style for slides, formatting the slides with different fonts, colours, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show.

Task 10:

Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet

Task 11:

LateX: Introduction to Latex and its installation and different IDEs. Creating first document using Latex, using content into sections using article and book class of LaTeX. Styling Pages: reviewing and customizing different paper sizes and formats. Formatting text (styles, size, alignment, colors and adding bullets and numbered items, inserting mathematical symbols, and images, etc.). Creating basic tables, adding simple and dashed borders, merging rows and columns. Referencing and Indexing: cross-referencing (refer to sections, table, images), bibliography (references).

References:

- 1. Introduction to Computers, Peter Norton, McGraw Hill
- 2. MOS study guide for word, Excel, Powerpoint& Outlook Exams, Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs, Bigelows, TMH
- 6. Lamport L. LATEX: a document preparation system: user's guide and reference manual. Addison-wesley; 1994.

Course Outcomes:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to
- Prepare the Documents using Word processors and Prepare spread sheets for calculations .using excel and also the documents using LAteX.
- Prepare Slide presentations using the presentation tool.
- Interconnect two or more computers for information sharing.
- Access the Internet and Browse it to obtain the required information.

Note: Use open source tools for implementation of the above exercises.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – I Sem L T P C 0 0 3 1.5

(20A51101P) CHEMISTRY LAB

(CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT, ECE, EEE and IT)

Course Objectives:

• Verify the fundamental concepts with experiments

List of Experiments:

- 1. Measurement of 10Dq by spectrophotometric method
- 2. Models of potential energy surfaces
- 3. Conductometrictitration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base
- 4. Determination of cell constant and conductance of solutions
- 5. Potentiometry determination of redox potentials and emfs
- 6. Determination of Strength of an acid in Pb-Acid battery
- 7. Preparation of a Bakelite and measurement of its mechanical properties (strength.).
- 8. Verify Lambert-Beer's law
- 9. Thin layer chromatography
- 10. Identification of simple organic compounds by IR.
- 11. Preparation of nanomaterial's by precipitation
- 12. Estimation of Ferrous Iron by Dichrometry.

Course Outcomes:

At the end of the course, the students will be able to

- Determine the cell constant and conductance of solutions (L3)
- Prepare advanced polymer Bakelite materials (L2)
- Measure the strength of an acid present in secondary batteries (L3)
- Analysethe IR of some organic compounds (L3)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) -I Sem L T P C 0 0 3 1.5

(20A05201P) C-PROGRAMMING & DATA STRUCTURES LAB

(Common to All Branches of Engineering)

Course Objectives:

- To get familiar with the basic concepts of C programming.
- To design programs using arrays, strings, pointers and structures.
- To illustrate the use of Stacks and Queues
- To apply different operations on linked lists.
- To demonstrate Binary search tree traversal techniques.
- To design searching and sorting techniques.

Week 1

Write C programs that use both recursive and non-recursive functions

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To solve Towers of Hanoi problem.

Week 2

- a) Write a C program to find both the largest and smallest number in a list of integers.
- b) Write a C program that uses functions to perform the following:
 - i) Addition of Two Matrices ii) Multiplication of Two Matrices

Week 3

- a) Write a C program that uses functions to perform the following operations:
 - i) To insert a sub-string in to a given main string from a given position.
 - ii) To delete n characters from a given position in a given string.

Week 4

- a) Write a C program that displays the position or index in the string S where the string T begins, or 1 if S doesn't contain T.
- b) Write a C program to count the lines, words and characters in a given text.

Week 5

- a) Write a C Program to perform various arithmetic operations on pointer variables.
- b) Write a C Program to demonstrate the following parameter passing mechanisms:
 - i) call-by-value
- ii) call-by-reference

Week 6

Write a C program that uses functions to perform the following operations:

- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

Week 7

Write C programs that implement stack (its operations) using

- i) Arrays
- ii) Pointers

Week 8

Write C programs that implement Queue (its operations) using

- i) Arrays
- ii) Pointers

Week 9

Write a C program that uses Stack operations to perform the following:

- i) Converting infix expression into postfix expression
- ii) Evaluating the postfix expression

Week 10

Write a C program that uses functions to perform the following operations on singly linked list

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 11

Write a C program that uses functions to perform the following operations on Doubly linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 12

Write a C program that uses functions to perform the following operations on circular linkedlist.

i) Creation ii) Insertion iii) Deletion iv) Traversal

Week 13

Write a C program that uses functions to perform the following:

- i) Creating a Binary Tree of integers
- ii) Traversing the above binary tree in preorder, inorder and postorder.

Week 14

Write C programs that use both recursive and non-recursive functions to perform the following searching operations for a key value in a given list of integers:

- i) Linear search
- ii) Binary search

Week 15

Write a C program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Bubble sort
- ii) Selection sort
- iii) Insertion sort

Text Books:

- 1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education.
- 2. B.A. Forouzon and R.F. Gilberg, "COMPUTER SCIENCE: A Structured Programming Approach Using C", Third edition, CENGAGE Learning, 2016.
- 3. Richard F. Gilberg & Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach with C", Second Edition, CENGAGE Learning, 2011.

Reference Books:

- 1. PradipDey and ManasGhosh, Programming in C, Oxford University Press, 2nd Edition 2011.
- 2. E.Balaguruswamy, "C and Data Structures", 4th Edition, Tata Mc Graw Hill.
- 3. A.K.Sharma, Computer Fundamentals and Programming in C, 2nd Edition, University Press.
- 4. M.T.Somashekara, "Problem Solving Using C", PHI, 2nd Edition 2009.

Course Outcomes

- Demonstrate basic concepts of C programming language. (L2)
- Develop C programs using functions, arrays, structures and pointers. (L6)
- Illustrate the concepts Stacks and Queues. (L2)
- Design operations on Linked lists. (L6)
- Apply various Binary tree traversal techniques. (L3)
- Develop searching and sorting methods. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – I Sem L T P C 0 0 3 1.5

(20A02101P) BASIC ELECTRICAL & ELECTRONICS ENGINEERING LAB (Civil, Mechanical, CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT and Food Technology)

Part A: Electrical Engineering Lab

Course Objectives:

- To Verify Kirchoff's laws and Superposition theorem
- To learn performance characteristics of DC Machines.
- To perform various tests on 1- Phase Transformer.
- To Study the I V Characteristics of Solar PV Cell

List of experiments: -

- 1. Verification of Kirchhoff laws.
- 2. Verification of Superposition Theorem.
- 3. Magnetization characteristics of a DC Shunt Generator.
- 4. Speed control of DC Shunt Motor.
- 5. OC & SC test of 1 Phase Transformer.
- 6. Load test on 1-Phase Transformer.
- 7. I V Characteristics of Solar PV cell
- 8. Brake test on DC Shunt Motor.

Course Outcomes:

After completing the course, the student will be able to

- Understand Kirchoff's Laws & Superposition theorem.
- Analyze the various characteristics on DC Machines by conducting various tests.
- Analyze I V Characteristics of PV Cell
- Apply the knowledge to perform various tests on 1-phase transformer

Part B: Electronics Engineering Lab

Course Objectives:

- To verify the theoretical concepts practically from all the experiments.
- To analyze the characteristics of Diodes, BJT, MOSFET, UJT.
- To design the amplifier circuits from the given specifications.
- Exposed to linear and digital integrated circuits.

List Of Experiments:

1. PN Junction diode characteristics A) Forward bias B) Reverse bias.

- 2. Zener diode characteristics and Zener as voltage Regulator.
- 3. Full Wave Rectifier with & without filter.
- 4. Wave Shaping Circuits. (Clippers & Clampers)
- 5. Input & Output characteristics of Transistor in CB / CE configuration.
- 6. Frequency response of CE amplifier.
- 7. Inverting and Non-inverting amplifiers using Op-AMPs.
- 8. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 9. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / **Equipment Required:** DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

Course outcomes:

- Learn the characteristics of basic electronic devices like PN junction diode, Zener diode & BJT.
- Construct the given circuit in the lab
- Analyze the application of diode as rectifiers, clippers and clampers and other circuits.
- Design simple electronic circuits and verify its functioning.

Note: Minimum Six Experiments to be performed in each section.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P C 3 0 0 3

(20A54202) PROBABILITY AND STATISTICS

(Common to CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML) and IT)

Course Objectives:

- To familiarize the students with the foundations of probability and statistical methods
- To impart probability concepts and statistical methods in various applications Engineering

Unit 1:

Descriptive statistics

Statistics Introduction, Measures of Variability (dispersion) Skewness Kurtosis, correlation, correlation coefficient, rank correlation, principle of least squares, method of least squares, regression lines, regression coefficients and their properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- summarize the basic concepts of data science and its importance in engineering (L2)
- ullet analyze the data quantitatively or categorically , measure of averages, variability (L4)
- adopt correlation methods and principle of least squares, regression analysis (L5)

UNIT 2: Probability

Probability, probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem, random variables (discrete and continuous), probability density functions, properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- Define the terms trial, events, sample space, probability, and laws of probability (L1)
- Make use of probabilities of events in finite sample spaces from experiments (L3)
- Apply Baye's theorem to real time problems (L3)
- Explain the notion of random variable, distribution functions and expected value(L2)

UNIT 3:

Probability distributions

Discrete distribution - Binomial, Poisson approximation to the binomial distribution and their properties. Continuous distribution: normal distribution and their properties.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply Binomial and Poisson distributions for real data to compute probabilities, theoretical frequencies (L3)
- Interpret the properties of normal distribution and its applications (L2)

Unit4:

Estimation and Testing of hypothesis, large sample tests

Estimation-parameters, statistics, sampling distribution, point estimation, Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, two types of errors and power of the test. Large Sample Tests: Test for single proportion, difference of proportions, test for single mean and difference of means. Confidence interval for parameters in one sample and two sample problems

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of estimation, interval estimation and confidence intervals (L2)
- Apply the concept of hypothesis testing for large samples (L4)

Unit 5:

Small sample tests

Student t-distribution (test for single mean, two means and paired t-test), testing of equality of variances (F-test), $\chi 2$ - test for goodness of fit, $\chi 2$ - test for independence of attributes.

Learning Outcomes:

At the end of this unit, the student will be able to

- Apply the concept of testing hypothesis for small samples to draw the inferences (L3)
- Estimate the goodness of fit (L5)

Text Books:

- 1. Miller and Freunds, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

Reference Books:

- 1. S. Ross, a First Course in Probability, Pearson Education India, 2002.
- 2. W. Feller, an Introduction to Probability Theory and its Applications, 1/e, Wiley, 1968.
- 3. Peyton Z. Peebles ,Probability, Random Variables & Random Signal Principles -, McGraw Hill Education, 4th Edition, 2001.

Course Outcomes:

Upon successful completion of this course, the student should be able to

- Make use of the concepts of probability and their applications (L3)
- Apply discrete and continuous probability distributions (L3)
- Classify the concepts of data science and its importance (L4)
- Interpret the association of characteristics and through correlation and regression tools (L4)
- Design the components of a classical hypothesis test (L6)
- Infer the statistical inferential methods based on small and large sampling tests (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P C 3 0 0 3

20A56201T APPLIED PHYSICS

(ECE, EEE, CSE, AI & DS, CSE (AI), CSE (IoT), CSE (Data Science), CSE (AI & ML), IT)

Course Objectives

- To make a bridge between the physics in school and engineering courses.
- To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- To understand the mechanisms of emission of light, the use of lasers as light sources for low and high energy applications, study of propagation of light wave through optical fibres along with engineering applications.
- To explain the significant concepts of dielectric and magnetic materials that leads to potential applications in the emerging micro devices.
- To enlighten the concepts of Quantum Mechanics and to provide fundamentals of de'Broglie waves, quantum mechanical wave equation and its applications, the importance of free electron theory and band theory of solids.
- Evolution of band theory to distinguish materials, basic concepts and transport phenomenon of charge carriers in semiconductors. To give an impetus on the subtle mechanism of superconductors using the concept of BCS theory and their fascinating applications.

Unit-I:

Wave Optics

Interference- Principle of superposition — Interference of light — Conditions for sustained interference - Interference in thin films (Reflection Geometry) — Colors in thin films — Newton's Rings — Determination of wavelength and refractive index.

Diffraction- Introduction – Fresnel and Fraunhofer diffraction – Fraunhofer diffraction due to single slit, double slit and N-slits (qualitative) – Grating spectrum.

Polarization- Introduction – Types of polarization – Polarization by reflection, refraction and double refraction - Nicol's Prism - Half wave and Quarter wave plates with applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- Analyze the differences between interference and diffraction with applications (L4)
- Illustrate the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II:

Lasers and Fiber optics

Lasers- Introduction – Characteristics of laser – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping mechanisms – Nd-YAG laser – He-Ne laser – Applications of lasers.

Fiber optics- Introduction – Principle of optical fiber – Acceptance Angle – Numerical Aperture – Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers – Propagation Losses (qualitative) – Applications.

Learning Outcomes:

At the end of this unit, the student will be able to

- Understand the basic concepts of LASER light Sources (L2)
- Apply the concepts to learn the types of lasers (L3)
- Identifies the Engineering applications of lasers (L2)
- Explain the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- Identify the applications of optical fibers in various fields (L2)

Unit-III:

Dielectric and Magnetic Materials

Dielectric Materials- Introduction – Dielectric polarization – Dielectric polarizability, Susceptibility and Dielectric constant – Types of polarizations: Electronic, Ionic and Orientation polarizations (Qualitative) – Lorentz internal field – Clausius-Mossotti equation.

Magnetic Materials- Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and Permeability – Origin of permanent magnetic moment – Classification of magnetic materials: Dia, para & Ferro-Domain concept of Ferromagnetism (Qualitative) – Hysteresis – Soft and Hard magnetic materials.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- Explain the applications of dielectric and magnetic materials (L2)
- Apply the concept of magnetism to magnetic devices (L3)

Unit IV:

Quantum Mechanics, Free Electron Theory and Band theory of Solids

Quantum Mechanics- Dual nature of matter – Schrodinger's time independent and dependent wave equation – Significance of wave function – Particle in a one-dimensional infinite potential well.

Free Electron Theory- Classical free electron theory (Merits and demerits only) – Quantum free electron theory – Equation for electrical conductivity based on quantum free electron theory – Fermi-Dirac distribution – Density of states – Fermi energy.

Band theory of Solids- Bloch's Theorem (Qualitative) – Kronig-Penney model (Qualitative) – E vs K diagram – Classification of crystalline solids – Effective mass of electron – m* vs K diagram – Concept of hole.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain the concept of dual nature of matter (L2)
- Understand the significance of wave function (L2)
- Interpret the concepts of classical and quantum free electron theories (L2)
- Explain the importance of K-P model
- Classify the materials based on band theory (L2)
- Apply the concept of effective mass of electron (L3)

Unit -V:

Semiconductors and Superconductors

Semiconductors- Introduction – Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors – Density of charge carriers – Dependence of Fermi energy on carrier concentration and temperature – Drift and diffusion currents – Einstein's equation – Direct and indirect band gap semiconductors – Hall effect – Hall coefficient – Applications of Hall effect.

Superconductors- Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory – Josephson effects (AC and DC) – High T_c superconductors – Applications of superconductors.

Learning Outcomes:

At the end of this unit, the student will be able to

- Classify the energy bands of semiconductors (L2)
- Interpret the direct and indirect band gap semiconductors (L2)
- Identify the type of semiconductor using Hall effect (L2)
- Identify applications of semiconductors in electronic devices (L2)
- Explain how electrical resistivity of solids changes with temperature (L2)
- Classify superconductors based on Meissner's effect (L2)
- Explain Meissner's effect, BCS theory & Josephson effect in superconductors (L2)

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering Physics B.K. Pandey and S. Chaturvedi, Cengage Learning.

Reference Books:

- 1. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018
- 2. Engineering Physics K. Thyagarajan, McGraw Hill Publishers
- 3. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press
- 4. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc Graw Hill

Course Outcomes

- Study the different realms of physics and their applications in both scientific and technological systems through physical optics. (L2)
- Identify the wave properties of light and the interaction of energy with the matter (L3).
- Asses the electromagnetic wave propagation and its power in different media (L5).
- Understands the response of dielectric and magnetic materials to the applied electric and magnetic fields. (L3)
- Study the quantum mechanical picture of subatomic world along with the discrepancies between the classical estimates and laboratory observations of electron transportation phenomena by free electron theory and band theory. (L2)
- Elaborate the physical properties exhibited by materials through the understanding of properties of semiconductors and superconductors. (L5)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech-(CSD) – II Sem L T P C 3 0 0 3

(20A52101T) COMMUNICATIVE ENGLISH

(Common to All Branches of Engineering)

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

UNIT -1

Lesson: On the Conduct of Life: William Hazlitt

Listening: Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions. **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others. **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information. **Reading for Writing:** Beginnings and endings of paragraphs - introducing the topic, summarizing the main idea and/or providing a transition to the next paragraph. **Grammar and Vocabulary:** Parts of Speech, Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countable and uncountable; singular and plural; basic sentence structures; simple question form - whquestions; word order in sentences.

Learning Outcomes

At the end of the module, the learners will be able to

- Understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- Ask and answer general questions on familiar topics and introduce oneself/others
- Employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- Recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- Form sentences using proper grammatical structures and correct word forms

UNIT -2

Lesson: The Brook: Alfred Tennyson

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts. **Speaking:** Discussion in pairs/small groups on specific topics followed by short structured talks. **Reading:** Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together. **Writing:** Paragraph writing (specific topics) using suitable cohesive devices; mechanics of writing - punctuation, capital letters. **Grammar and Vocabulary:** Cohesive devices - linkers, sign posts and transition signals; use of articles and zero article; prepositions.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks on general topics
- Participate in informal discussions and speak clearly on a specific topic using suitable discourse markers
- Understand the use of cohesive devices for better reading comprehension
- Write well structured paragraphs on specific topics
- Identify basic errors of grammar/ usage and make necessary corrections in short texts

UNIT -3

Lesson: The Death Trap: Saki

Listening: Listening for global comprehension and summarizing what is listened to. **Speaking:** Discussing specific topics in pairs or small groups and reporting what is discussed **Reading:** Reading a text in detail by making basic inferences -recognizing and interpreting specific context clues; strategies to use text clues for comprehension. **Writing:** Summarizing, Paragraph Writing **Grammar and Vocabulary:** Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Learning Outcomes

At the end of the module, the learners will be able to

- Comprehend short talks and summarize the content with clarity and precision
- Participate in informal discussions and report what is discussed
- Infer meanings of unfamiliar words using contextual clues
- Write summaries based on global comprehension of reading/listening texts
- Use correct tense forms, appropriate structures and a range of reporting verbs in speech and writing

UNIT-4

Lesson: Innovation: Muhammad Yunus

Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video. **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data. **Writing:** Letter Writing: Official Letters/Report Writing **Grammar and**

Vocabulary: Quantifying expressions - adjectives and adverbs; comparing and contrasting; Voice - Active & Passive Voice

Learning Outcomes

At the end of the module, the learners will be able to

- Infer and predict about content of spoken discourse
- Understand verbal and non-verbal features of communication and hold formal/informal conversations
- Interpret graphic elements used in academic texts
- Produce a coherent paragraph interpreting a figure/graph/chart/table
- Use language appropriate for description and interpretation of graphical elements

UNIT -5

Lesson: Politics and the English Language: George Orwell

Listening: Identifying key terms, understanding concepts and answering a series of relevant questions that test comprehension. Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Reading: Reading for comprehension. Writing: Writing structured essays on specific topics using suitable claims and evidences. Grammar and Vocabulary: Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Learning Outcomes

At the end of the module, the learners will be able to

- Take notes while listening to a talk/lecture and make use of them to answer questions
- Make formal oral presentations using effective strategies
- Comprehend, discuss and respond to academic texts orally and in writing
- Produce a well-organized essay with adequate support and detail
- Edit short texts by correcting common errors

Text Book:

1. Language and Life: A Skills Approach- I Edition 2019, Orient Black Swan

Reference Books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Raymond Murphy's English Grammar in Use Fourth Edition (2012) E-book
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. Oxford Learners Dictionary, 12th Edition, 2011
- 6. Norman Lewis Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary (2014)
- 7. Speed Reading with the Right Brain: Learn to Read Ideas Instead of Just Words by David Butler

Course Outcomes

- Retrieve the knowledge of basic grammatical concepts
- Understand the context, topic, and pieces of specific information from social or transactional dialogues spoken by native speakers of English
- Apply grammatical structures to formulate sentences and correct word forms
- Analyze discourse markers to speak clearly on a specific topic in informal discussions
- Evaluate reading/listening texts and to write summaries based on global comprehension of these texts.
- Create a coherent paragraph interpreting a figure/graph/chart/table

Web links

www.englishclub.com www.easyworldofenglish.com www.languageguide.org/english/ www.bbc.co.uk/learningenglish www.eslpod.com/index.html www.myenglishpages.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech-(CSD) - II Sem L T P C 3 0 0 3

(20A05101T) PYTHON PROGRAMMING & DATA SCIENCE

(CSE, AI & DS, CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT)

Course Objectives

- To learn the fundamentals of Python.
- To discuss the concepts of Functions and Exceptions.
- To familiarize with Python libraries for Data Analysis and Data Visualization.
- To introduce preliminary concepts in Pattern Recognition and Machine learning.
- To provide an overview of Deep Learning and Data Science models.

Unit-I

Introduction to Python: Features of Python, Data types, Operators, Input and output, Control Statements.

Strings: Creating strings and basic operations on strings, string testing methods. Lists, Dictionaries, Tuples.

Learning outcomes:

At the end of this unit, the students will be able to

- List the basic constructs of Python. (L1)
- Apply the conditional execution of the program (L3)
- Design programs for manipulating strings (L6)
- Use the data structure lists, Dictionaries and Tuples (L3)

Unit-II

Functions: Defining a function, Calling a function, returning multiple values from a function, functions are first class objects, formal and actual arguments, positional arguments, recursive functions.

Exceptions: Errors in a Python program, exceptions, exception handling, types of exceptions, the except block, the assert statement, user-defined exceptions.

Learning outcomes:

At the end of this unit, the students will be able to

- Solve the problems by applying the modularity principle. (L3)
- Classify exceptions and explain the ways of handling them. (L4)

Unit-III

Introduction to NumPy, Pandas, Matplotlib.

Exploratory Data Analysis (EDA), Data Science life cycle, Descriptive Statistics, Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA. Data Visualization: Scatter plot, bar chart, histogram, boxplot, heat maps, etc.

Learning outcomes:

At the end of this unit, the students will be able to

- Demonstrate various mathematical operations on arrays using NumPy (L2)
- Analyze and manipulate Data using Pandas (L4)
- Creating static, animated, and interactive visualizations using Matplotlib. (L6)

Unit-IV

Introduction to Pattern Recognition and Machine Learning: Patterns, features, pattern representation, the curse of dimensionality, dimensionality reduction. Classification—linear and non-linear. Bayesian, Perceptron, Nearest neighbor classifier, Logistic regression, Naïve-Bayes, decision trees and random forests; boosting and bagging. Clustering---partitional and hierarchical; k-means clustering. Regression.

Cost functions, training and testing a classifier. Cross-validation, Class-imbalance – ways of handling, Confusion matrix, evaluation metrics.

Learning outcomes:

At the end of this unit, the students will be able to

- Define Patterns and their representation (L1)
- Describe the Classification and Clustering (L2)
- illustrate cost functions and class imbalance (L3)

Unit-V

Introduction to Deep Learning: Multilayer perceptron. Backpropagation. Loss functions. Hyperparameter tuning, Overview of RNN, CNN and LSTM.

Overview of Data Science Models: Applications to text, images, videos, recommender systems, image classification, Social network graphs.

At the end of this unit, the students will be able to

- Describe RNN, CNN and (L2)
- Explain the applications of Data Science (L2)

Textbooks:

1. Allen B. Downey, "Think Python", 2nd edition, SPD/O'Reilly, 2016.

- 2. Cathy O'Neil, Rachel Schutt, Doing Data Science, Straight Talk from the Frontline. O'Reilly, 2013.
- 3. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007.

References:

- 1. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.
- 2. Francois Chollet, Deep Learning with Python, 1/e, Manning Publications Company, 2017
- 3. EMC2: Data Science and Big Data Analytics, EMC Education Services, EMC 2 , Wiley Publication, 2015.
- 4. V. Susheela Devi and M. Narasimha Murty. Pattern Recognition An Introduction. Universities Press (Indian Edition; there is an expensive Springer version of the same)
- 5. Goodfellow and YoshuaBengio and Aaron Courville. Deep Learning. MIT Press. Book available online at https://www.deeplearningbook.org/.
- 6. J. Leskovec, A. Rajaraman, J.D. Ullman. Mining of Massive Datasets. Cambridge University Press. (Indian Edition; Online pdf is available for download)

Course Outcomes:

- 1. Apply the features of Python language in various real applications. (L3)
- 2. Identify the appropriate data structure of Python for solving a problem (L2)
- 3. Demonstrate data analysis, manipulation and visualization of data using Python libraries (L5)
- 4. Enumerate machine learning algorithms. (L1)
- 5. Analyze the various applications of Data Science. (L4)
- 6. Design solutions for real-world problems using Python. (L6)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P/D C 1 0 0/2 2

(20A03101T) ENGINEERING DRAWING

(Common to All Branches of Engineering)

Course Objectives:

- Bring awareness that Engineering Drawing is the Language of Engineers.
- Familiarize how industry communicates technical information.
- Teach the practices for accuracy and clarity in presenting the technical information.
- Develop the engineering imagination essential for successful design.

Unit: I

Introduction to Engineering Drawing: Principles of Engineering Drawing and its significance-Conventions in drawing-lettering - BIS conventions.

- a)Conic sections including the rectangular hyperbola- general method only,
- b) Cycloid, epicycloids and hypocycloid c) Involutes

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the significance of engineering drawing
- Know the conventions used in the engineering drawing
- Identify the curves obtained in different conic sections
- Draw different curves such as cycloid, involute and hyperbola

Unit: II

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line. Projections of regular plane surfaces.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of projection
- Know how to draw the projections of points, lines
- Differentiate between projected length and true length
- Find the true length of the lines

Unit: III

Projections of solids: Projections of regular solids inclined to one or both planes by rotational or auxiliary views method.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the procedure to draw projection of solids
- Differentiate between rotational method and auxillary view method.
- Draw the projection of solid inclined to one plain
- Draw the projection of solids inclined to both the plains

Unit: IV

Sections of solids: Section planes and sectional view of right regular solids- prism, cylinder, pyramid and cone. True shapes of the sections.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand different sectional views of regular solids
- Obtain the true shapes of the sections of prism
- Draw the sectional views of prism, cylinder, pyramid and cone

Unit: V

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.

Learning Outcomes:

At the end of this unit the student will be able to

- Understand the meaning of development of surfaces
- Draw the development of regular solids such as prism, cylinder, pyramid and cone
- Obtain the development of sectional parts of regular shapes

Text Books:

- 1. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai 2012.
- 2. N.D.Bhatt, Engineering Drawing, 53/e, Charotar Publishers, 2016.

Reference Books:

- 1. Dhanajay A Jolhe, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2009
- 2. Venugopal, Engineering Drawing and Graphics, 3/e, New Age Publishers, 2000
- 3. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Draw various curves applied in engineering. (12)
- Show projections of solids and sections graphically. (12)
- Draw the development of surfaces of solids. (13)

Additional Sources

Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P C 0 0 2 1

(20A03101P) ENGINEERING GRAPHICS LAB

(Common to All Branches of Engineering)

Course Objectives:

- Instruct the utility of drafting & modeling packages in orthographic and isometric drawings.
- Train the usage of 2D and 3D modeling.
- Instruct graphical representation of machine components.

Computer Aided Drafting:

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions.

Dimensioning principles and conventional representations.

Orthographic Projections: Systems of projections, conventions and application to orthographic projections - simple objects.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Text Books:

- 1. K. Venugopal, V.Prabhu Raja, Engineering Drawing + Auto Cad, New Age International Publishers.
- 2. Kulkarni D.M, AP Rastogi and AK Sarkar, Engineering Graphics with Auto Cad, PHI Learning, Eastern Economy editions.

Reference Books:

- 1. T. Jayapoovan, Engineering Graphics using Auto Cad, Vikas Publishing House
- 2. K.L.Narayana & P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 3. Linkan Sagar, BPB Publications, Auto Cad 2018 Training Guide.
- 4. K.C.John, Engineering Graphics, 2/e, PHI, 2013
- 5. Basant Agarwal & C.M.Agarwal, Engineering Drawing, Tata McGraw-Hill, Copy Right, 2008.

Course Outcomes:

After completing the course, the student will be able to

- Use computers as a drafting tool. (L2)
- Draw isometric and orthographic drawings using CAD packages. (L3)

Additional Sources

1. Youtube: http-sewor, Carleton.cag, kardos/88403/drawings.html conic sections-online, red woods.edu

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P C 0 0 3 1.5

(20A52101P) COMMUNICATIVE ENGLISH LAB

(Common to All Branches of Engineering)

Course Objectives

- students will be exposed to a variety of self instructional, learner friendly modes of language learning
- students will learn better pronunciation through stress, intonation and rhythm
- students will be trained to use language effectively to face interviews, group discussions, public speaking
- students will be initiated into greater use of the computer in resume preparation, report writing, format making etc

List of Topics

- 1. Phonetics
- 2. Reading comprehension
- 3. Describing objects/places/persons
- 4. Role Play or Conversational Practice
- 5. JAM
- 6. Etiquettes of Telephonic Communication
- 7. Information Transfer
- 8. Note Making and Note Taking
- **9.** E-mail Writing
- 10. Group Discussions-1
- 11. Resume Writing
- 12. Debates
- 13. Oral Presentations
- 14. Poster Presentation
- 15. Interviews Skills-1

Suggested Software

Orel, Walden Infotech, Young India Films

Reference Books

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014
- 2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.
- 5. A Textbook of English Phonetics for Indian Students by T.Balasubramanyam

Web Links

www.esl-lab.com www.englishmedialab.com www.englishinteractive.net

Course Outcomes

After completing the course, the student will be able to

- Listening and repeating the sounds of English Language
- Understand the different aspects of the English language
- proficiency with emphasis on LSRW skills
- Apply communication skills through various language learning activities
- Analyze the English speech sounds, stress, rhythm, intonation and syllable
- Division for better listening and speaking comprehension.
- Evaluate and exhibit acceptable etiquette essential in social and professional settings
- Create awareness on mother tongue influence and neutralize it in order to
- Improve fluency in spoken English.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P C 0 0 3 1.5

(20A56201P) APPLIED PHYSICS LAB

(ECE, EEE, CSE, AI & DS, CSE (AI), CSE (IoT), CSE (Data Science), CSE (AI & ML), IT)

Course Objectives:

- Understands the concepts of interference, diffraction and their applications.
- Understand the role of optical fiber parameters in communication.
- Recognize the importance of energy gap in the study of conductivity and Hall Effect in a semiconductor.
- Illustrates the magnetic and dielectric materials applications.
- Apply the principles of semiconductors in various electronic devices.

Note: In the following list, out of 15 experiments, any 12 experiments (minimum 10) must be performed in a semester

List of Applied Physics Experiments

- 1. Determine the thickness of the wire using wedge shape method
- 2. Determination of the radius of curvature of the lens by Newton's ring method
- 3. Determination of wavelength by plane diffraction grating method
- 4. Determination of dispersive power of prism.
- 5. Determination of wavelength of LASER light using diffraction grating.
- 6. Determination of particle size using LASER.
- 7. To determine the numerical aperture of a given optical fiber and hence to find its acceptance angle
- 8. Determination of dielectric constant by charging and discharging method.
- 9. Magnetic field along the axis of a circular coil carrying current –Stewart Gee's method.
- 10. Measurement of magnetic susceptibility by Gouy's method
- 11. Study the variation of B versus H by magnetizing the magnetic material (B-H curve)
- 12. To determine the resistivity of semiconductor by Four probe method
- 13. To determine the energy gap of a semiconductor
- 14. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect.
- 15. Measurement of resistance with varying temperature.

Course Outcomes:

At the end of the course, the student will be able to

- Operate optical instruments like microscope and spectrometer (L2)
- Determine thickness of a hair/paper with the concept of interference (L2)
- Estimate the wavelength of different colors using diffraction grating and resolving power (L2)
- Plot the intensity of the magnetic field of circular coil carrying current with distance (L3)

- Evaluate the acceptance angle of an optical fiber and numerical aperture (L3)
- Determine the resistivity of the given semiconductor using four probe method (L3)
- Identify the type of semiconductor i.e., n-type or p-type using hall effect (L3)
- Calculate the band gap of a given semiconductor (L3)

References

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics" S Chand Publishers, 2017.
- 2. http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University

AWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P C 0 0 3 1.5

(20A05101P) PYTHON PROGRAMMING & DATA SCIENCE LAB (CSE, AI & DS,CSE (AI), CSE(IoT), CSE (Data Science), CSE(AI & ML), IT)

Course Objectives:

- To train the students in solving computational problems
- To elucidate solving mathematical problems using Python programming language
- To understand the fundamentals of Python programming concepts and its applications.
- Practical understanding of building different types of models and their evaluation

List of Topics

- 1. Write a program to demonstrate a) Different numeric data types and b) To perform different Arithmetic Operations on numbers in Python.
- 2. Write a program to create, append, and remove lists in Python.
- 3. Write a program to demonstrate working with tuples in Python.
- 4. Write a program to demonstrate working with dictionaries in Python.
- 5. Write a program to demonstrate a) arrays b) array indexing such as slicing, integer array indexing and Boolean array indexing along with their basic operations in NumPy.
- 6. Write a program to compute summary statistics such as mean, median, mode, standard deviation and variance of the given different types of data.
- 7. Write a script named copyfile.py. This script should prompt the user for the names of two text files. The contents of the first file should be the input that to be written to the second file.
- 8. Write a program to demonstrate Regression analysis with residual plots on a given data set
- 9. Write a program to demonstrate the working of the decision tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 10. Write a program to implement the Naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 11. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions using Java/Python ML library classes.
- 12. Write a program to implement k-Means clustering algorithm to cluster the set of data stored in .CSV file. Compare the results of various "k" values for the quality of clustering.
- 13. Write a program to build Artificial Neural Network and test the same using appropriate data sets.

Textbooks:

1. Francois Chollet, Deep Learning with Python, 1/e, Manning Publications Company, 2017

- 2. Peter Wentworth, Jeffrey Elkner, Allen B. Downey and Chris Meyers, "How to Think Like a Computer Scientist: Learning with Python 3", 3rd edition, Available at http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf
- 3. Paul Barry, "Head First Python a Brain Friendly Guide" 2nd Edition, O'Reilly, 2016
- 4. Dainel Y.Chen "Pandas for Everyone Python Data Analysis" Pearson Education, 2019

Course Outcomes:

At the end of the course, the student will be able to

- Illustrate the use of various data structures. (L3)
- Analyze and manipulate Data using Pandas (L4)
- Creating static, animated, and interactive visualizations using Matplotlib. (L6)
- Understand the implementation procedures for the machine learning algorithms. (L2)
- Apply appropriate data sets to the Machine Learning algorithms (L3)
- Identify and apply Machine Learning algorithms to solve real-world problems (L1)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-I Sem L T P C 3 0 0 3

(20A54304) DISCRETE MATHEMATICS & GRAPH THEORY

Course Objectives:

Introduce the concepts of mathematical logic and gain knowledge in sets, relations and functions and Solve problems using counting techniques and combinatorics and to introduce generating functions and recurrence relations. Use Graph Theory for solving real world problems

Course Outcomes (CO):

After completion of the course, students will be able to

- Apply mathematical logic to solve problems.
- Understand the concepts and perform the operations related to sets, relations and functions.
- Gain the conceptual background needed and identify structures of algebraic nature.
- Apply basic counting techniques to solve combinatorial problems.
- Formulate problems and solve recurrence relations.
- Apply Graph Theory in solving computer science problems

UNIT I Mathematical Logic

8 Hrs

Introduction, Statements and Notation, Connectives, Well-formed formulas, Tautology, Duality law, Equivalence, Implication, Normal Forms, Functionally complete set of connectives, Inference Theory of Statement Calculus, Predicate Calculus, Inference theory of Predicate Calculus.

UNIT II Set theory

9 Hrs

Basic Concepts of Set Theory, Relations and Ordering, The Principle of Inclusion- Exclusion, Pigeon hole principle and its application, Functions composition of functions, Inverse Functions, Recursive Functions, Lattices and its properties. Algebraic structures: Algebraic systems-Examples and General Properties, Semi groups and Monoids, groups, sub groups, homomorphism, Isomorphism.

UNIT III Elementary Combinatorics

8 Hrs

Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutations with Constrained Repetitions, Binomial Coefficients, The Binomial and Multinomial Theorems.

UNIT IV Recurrence Relations

9 Hrs

Generating Functions of Sequences, Calculating Coefficients of Generating Functions, Recurrence relations, Solving Recurrence Relations by Substitution and Generating functions, The Method of Characteristic roots, Solutions of Inhomogeneous Recurrence Relations.

UNIT V Graphs

9 Hrs

Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four Color Problem

Textbooks:

- 1. Joe L. Mott, Abraham Kandel and Theodore P. Baker, Discrete Mathematics for Computer Scientists & Mathematicians, 2nd Edition, Pearson Education.
- 2. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 2002.

Reference Books:

- 1. Kenneth H. Rosen, Discrete Mathematics and its Applications with Combinatorics and Graph Theory, 7th Edition, McGraw Hill Education (India) Private Limited.
- 2. Graph Theory with Applications to Engineering and Computer ScienceByNarsinghDeo.

Online Learning Resources:

http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-I Sem L T P C 3 0 0 3

(20A38301T) DIGITAL LOGIC DESIGN & COMPUTER ORGANIZATION

Course Objectives:

- To understand the basic theoretical concepts of digital systems like the binary system and Boolean algebra.
- To express real life problems in logic design terminology.
- To understand and be able to explain bus transactions, memory organization and address decoding, basic I/O interfaces and port addressing.
- To understand how to write micro programmed control sequence for processors.
- To explain the functions of the various computer hardware components.

Course Outcomes:

After completion of the course, students will be able to

- Identify, understand and apply different number systems and codes.
- Design combinational circuits using fundamental logic gates and programmable logic devices for a given problem.
- Describe the organization of computer and various instruction formats.
- Classify the different memory systems and the different types of mapping techniques to convert virtual addresses to physical addresses.
- Identify various peripheral device architectures and operations.
- Write assembly language programs for various applications.

UNIT I Basic Structure of Computers:

Lecture Hrs

Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers, Computer Generations. Data Representation: Binary Numbers, Fixed Point Representation. Floating – Point Representation. Number base conversions, Octal and Hexadecimal Numbers, complements, Signed binary numbers, Binary codes.

UNIT II Digital Logic Circuits

Lecture Hrs

Digital Logic Circuits - I: Basic Logic Functions, Logic gates, universal logic gates, Minimization of Logic expressions. Flip-flops, Combinational Circuits.

Digital Logic Circuits - II: Registers, Shift Registers, Binary counters, Decoders, Multiplexers, Programmable Logic Devices.

UNIT III Computer Arithmetic & Instruction Set & Addressing Lecture Hrs

Computer Arithmetic: Algorithms for fixed point and floating point addition, subtraction, multiplication and division operations. Hardware Implementation of arithmetic and logic operations, High performance arithmetic.

Instruction Set & Addressing: Memory Locations and Addresses, Machine addresses and sequencing, Various Addressing Modes, Instruction Formats, Basic Machine Instructions. IA-32 Pentium example.

UNIT IV Processor Organization

Lecture Hrs

Introduction to CPU, Register Transfers, Execution of Instructions, Multiple Bus Organization, Hardwired Control, Microprogrammed Control Memory Organization: Concept of Memory, RAM, ROM memories, memory hierarchy, cache memories, virtual memory, secondary storage, memory management requirements.

UNIT V Input / Output Organization

Lecture Hrs

Introduction to I/O, Interrupts- Hardware, Enabling and disabling Interrupts, Device Control, Direct memory access, buses, interface circuits, standard I/O Interfaces.

Textbooks:

- Computer Organization Carl Hamacher, ZvonkoVranesic, SafwatZaky, fifth edition, McGraw Hill.
- 2. Computer Architecture and Organization- An Integrated Approach, Miles Murdocca, Vincent Heuring, Second Edition, Wiley India.
- 3. Computer Systems Architecture M.Moris Mano, IIIrd Edition, Pearson.

Reference Books:

- 1. Computer Organization and Architecture William Stallings Sixth Edition, Pearson
- 2. Computer- organization and Design- David A. Paterson and John L.Hennessy-Elsevier.
- 3. Fundamentals or Computer Organization and Design, SivaramaDandamudi Springer Int. Edition.
- 4. Digital Design Third Edition, M.Morris Mano, Pearson Education/PHI.

5. Fundamentals of Logic Design, Roth, 5th Edition, Thomson.

Online Learning Resources:

https://nptel.ac.in/courses/117105080

https://nptel.ac.in/courses/106103180

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-I Sem L T P C 3 0 0 3

(20A05301T)ADVANCED DATA STRUCTURES & ALGORITHMS

Course Objectives:

- Learn asymptotic notations, and analyze the performance of different algorithms.
- Understand and implement various data structures.
- Learn and implement greedy, divide and conquer, dynamic programming and backtracking algorithms using relevant data structures.
- Understand non-deterministic algorithms, polynomial and non-polynomial problems.

Course Outcomes:

After completion of the course, students will be able to

- Analyze the complexity of algorithms and apply asymptotic notations.
- Apply non-linear data structures and their operations.
- Understand and apply greedy, divide and conquer algorithms.
- Develop dynamic programming algorithms for various real-time applications.
- Illustrate Backtracking algorithms for various applications.

UNIT I Introduction to Algorithms

9 Hrs

Algorithms, Pseudocode for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh, Omega, Theta notation and Little oh notation, Polynomial Vs Exponential Algorithms, Average, Best and Worst Case Complexities, Analysing Recursive Programs.

UNIT II Trees Part-I

8 Hrs

Binary Search Trees: Definition and Operations, AVL Trees: Definition and Operations, Applications.

B Trees: Definition and Operations.

UNIT III Trees Part-II

8 Hrs

Red-Black Trees, Splay Trees, Applications.

Hash Tables: Introduction, Hash Structure, Hash functions, Linear Open Addressing, Chaining and Applications.

UNIT IV Divide and conquer, Greedy method

9 Hrs

Divide and conquer: General method, applications-Binary search, Finding Maximum and minimum, Quick sort, Merge sort, Strassen's matrix multiplication.

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT V Dynamic Programming & Backtracking

9 Hrs

Dynamic Programming: General method, applications- 0/1 knapsack problem, All pairs shortest path problem, Travelling salesperson problem, Reliability design.

Backtracking: General method, applications-n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.

Introduction to NP-Hard and NP-Complete problems: Basic Concepts.

Textbooks:

- 1. Data Structures and algorithms: Concepts, Techniques and Applications, G A V Pai.
- 2. Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni and Rajasekharam, Galgotia publications Pvt. Ltd.

Reference Books:

- 1. Classic Data Structures by D. Samanta, 2005, PHI
- 2. Design and Analysis of Computer Algorithms by Aho, Hopcraft, Ullman 1998, PEA.
- 3. Introduction to the Design and Analysis of Algorithms by Goodman, Hedetniemi, TMG.

Online Learning Resources: https://www.tutorialspoint.com/advanced data structures/index.asp

http://peterindia.net/Algorithms.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-I Sem L T P C 3 0 0 3

(20A05302T)OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Course Objectives:

- To understand object-oriented concepts and problem solving techniques
- To obtain knowledge about the principles of inheritance and polymorphism
- To implement the concept of packages, interfaces, exception handling and concurrency mechanism.
- To design the GUIs using applets and swing controls.
- To understand the Java Database Connectivity Architecture

Course Outcomes:

After completion of the course, students will be able to

- Solve real-world problems using OOP techniques.
- Apply code reusability through inheritance, packages and interfaces
- Solve problems using java collection framework and I/O classes.
- Develop applications by using parallel streams for better performance.
- Develop applets for web applications.
- Build GUIs and handle events generated by user interactions.
- Use the JDBC API to access the database

UNIT I Introduction

Introduction: Introduction to Object Oriented Programming, The History and Evolution of Java, Introduction to Classes, Objects, Methods, Constructors, this keyword, Garbage Collection, Data Types, Variables, Type Conversion and Casting, Arrays, Operators, Control Statements, Method Overloading, Constructor Overloading, Parameter Passing, Recursion, String Class and String handling methods.

UNIT II Inheritance, Packages, Interfaces

9Hrs

8Hrs

Inheritance: Basics, Using Super, Creating Multilevel hierarchy, Method overriding, Dynamic Method Dispatch, Using Abstract classes, Using final with inheritance, Object class,

Packages: Basics, Finding packages and CLASSPATH, Access Protection, Importing packages.

Interfaces: Definition, Implementing Interfaces, Extending Interfaces, Nested Interfaces, Applying Interfaces, Variables in Interfaces.

UNIT III Exception handling, Stream based I/O (java.io) 9Hrs

Exception handling - Fundamentals, Exception types, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built-in exceptions, creating own exception subclasses.

Stream based I/O (java.io) – The Stream classes-Byte streams and Character streams, Reading console Input and Writing Console Output, File class, Reading and Writing Files, Random access file operations, The Console class, Serialization, Enumerations, Autoboxing, Generics.

UNIT IV Multithreading, The Collections Framework (java.util) 8Hrs

Multithreading: The Java thread model, Creating threads, Thread priorities, Synchronizing threads, Interthread communication.

The Collections Framework (java.util): Collections overview, Collection Interfaces, The Collectionclasses- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Hashtable, Properties, Stack, Vector, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner.

UNIT V Applet, GUI Programming with Swings, Accessing Databases with JDBC 8Hrs

Applet: Basics, Architecture, Applet Skeleton, requesting repainting, using the status window, passing parameters to applets

GUI Programming with Swings – The origin and design philosophy of swing, components and containers, layout managers, event handling, using a push button, jtextfield, jlabel and image icon, the swing buttons, jtext field, jscrollpane, jlist, jcombobox, trees, jtable, An overview of jmenubar, jmenu and jmenuitem, creating a main menu, showmessagedialog, showconfirmdialog, showinputdialog, showoptiondialog, jdialog, create a modeless dialog.

Accessing Databases with JDBC:

Types of Drivers, JDBC Architecture, JDBC classes and Interfaces, Basic steps in developing JDBC applications, Creating a new database and table with JDBC.

Textbooks:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Java How to Program, 10th Edition, Paul Dietel, Harvey Dietel, Pearson Education.

Reference Books:

- 1. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.
- 2. Core Java Volume 1 Fundamentals, Cay S. Horstmann, Pearson Education.

- 3. Java Programming for core and advanced learners, Sagayaraj, Dennis, Karthik andGajalakshmi, University Press
 - 4. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
 - 5. Object Oriented Programming through Java, P. Radha Krishna, University Press.
 - 6. Programming in Java, S. Malhotra, S. Chaudhary, 2nd edition, Oxford Univ. Press.
 - 7. Java Programming and Object-oriented Application Development, R.A. Johnson,

Cengage Learning.

Online Learning Resources:

https://www.w3schools.com/java/java_oop.asp

http://peterindia.net/JavaFiles.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-I Sem L T P C 3 0 0 3

(20A38302) HUMAN COMPUTER INTERACTION

Course Objectives:

- To understand the fundamentals of human computer interaction including concepts of the user-centric design, modern user interfaces, rapid prototyping, usability, and user evaluations.
- To understand the perceptual and cognitive basis of human-computer interaction.

Course Outcomes:

After completion of the course, students will be able to

- Analyze Human-Computer Interaction principles and designs in Information Systems.
- Compare various HCI designs to gain knowledge on user-centric interfaces.
- Evaluate the Internet sites considering; usability and user appreciation designs.
- Apply Information Systems tools to prototype the end-user design.
- Develop end-user interfaces incorporating problem solving solutions in HCI.

UNIT I Foundations of HCI

Lecture 8Hrs

The Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity Paradigms.

UNIT II Design & Software Process

Lecture 9Hrs

Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.

UNIT III Models and Theories

Lecture 8Hrs

Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.

UNIT IV Mobile HCI

Lecture 8Hrs

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.

UNIT V Web Interface Design

Lecture9 Hrs

Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.

Textbooks:

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human Computer Interaction, Third Edition, Pearson Education, 2004.
- 2. Brian Fling, Mobile Design and Development, First Edition, O'Reilly Media, 2009
- 3. Bill Scott and Theresa Neil, Designing Web Interfaces, First Edition, O'Reilly, 2009.

Reference Books:

- 1. Human Computer Interaction: An Empirical Research Perspective by I. Schott Mackenzie, (Morgan Kaufmann)
- 2. Research Methods in Human-Computer Interaction, by Jonathan Lazar, Jinjuan Heidi Feng, Harry Hochheiser, (Wiley)
- 3. Interaction Design: Beyond Human-Computer Interaction (4th Edition) by Jenny Preece, Helen Sharp, Yvonne Rogers (Wiley)

Online Learning Resources:

https://nptel.ac.in/courses/106103115

(20A38301P) DIGITAL LOGIC DESIGN & COMPUTER ORGANIZATION LAB

Course Objectives:

- To understand all the concepts of Logic Gates and Boolean Functions.
- To learn about Combinational Logic and Sequential Logic Circuits.
- To design logic circuits using Programmable Logic Devices.
- To learn Assembly Language Programming of 8086.

Course Outcomes:

- Design any Logic circuit using basic concepts of Boolean Algebra.
- Design any Logic circuit using basic concepts of PLDs.
- Design and develop any application using 8086 Microprocessor.

List of Experiments:

Note: Minimum of 12 (6+6) experiments shall be conducted from both the sections given below:

Digital Logic Design:

- 1. Implement Logic gates using NAND and NOR gates
- 2. Design a Full adder using gates
- 3. Design and implement the 4:1 MUX, 8:1 MUX using gates /ICs.
- 4. Design and Implement a 3 to 8 decoder using gates
- 5. Design a 4 bit comparator using gates/IC
- 6. Design and Implement a 4 bit shift register using Flip flops
- 7. Design and Implement a Decade counter.

Write assembly language programs for the following using GNU Assembler.

- 1. 8 Bit Addition and Subtraction.
- 2. 16 Bit Addition.
- 3. BCD Addition.
- 4. BCD Subtraction.

- 5. 8 Bit Multiplication.
- 6. 8 Bit Division.
- 7. Searching for an Element in an Array.
- 8. Sorting in Ascending and Descending Orders.
- 9. Finding Largest and Smallest Elements from an Array.
- 10. Block Move

References:

- 1. Switching theory and logic design –A. Anand Kumar PHI, 2013
- 2. Advanced microprocessor & Peripherals-A. K. Ray and K. M. Bherchandavi, TMH, 2nd edition.
- 3. Switching and Finite Automatic theory-ZviKohavi, NirajK.Jha Cambridge, 3rd edition
- 4. Digital Design Morris Mano, PHI, 3rd edition
- 5. Microprocessor and Interfacing –Douglas V. Hall, TMGH 2nd edition

Online Learning Resources/Virtual Labs:

http://vlabs.iitkgp.ernet.in/coa/#

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-I Sem L T P C 0 0 3 1.5

(20A05301P) ADVANCED DATA STRUCTURES AND ALGORITHMS LAB

Course Objectives:

- Learn data structures for various applications.
- Implement different operations of data structures by optimizing the performance.
- Develop applications using Greedy, Divide and Conquer, dynamic programming.
- Implement applications for backtracking algorithms using relevant data structures.

Course Outcomes:

After completion of the course, students will be able to

- Understand and apply data structure operations.
- Understand and apply non-linear data structure operations.
- Apply Greedy, divide and conquer algorithms.
- Develop dynamic programming algorithms for various real-time applications.
- Illustrate and apply backtracking algorithms, further able to understand non-deterministic algorithms.

List of Experiments:

1. Write a program to	implement the following	g operations on binary S	earch free:
a) Insert	b) Delete	c) Search	d) Display

White a magnetic implement the following an actions on Dinam Court Trace

- 2. Write a program to perform a Binary Search for a given set of integer values.
- 3. Write a program to implement Splay trees.
- 4. Write a program to implement Merge sort for the given list of integer values.
- 5. Write a program to implement Quicksort for the given list of integer values.
- 6. Write a program to find the solution for the knapsack problem using the greedy method.
- 7. Write a program to find minimum cost spanning tree using Prim's algorithm
- 8. Write a program to find minimum cost spanning tree using Kruskal's algorithm
- 9. Write a program to find a single source shortest path for a given graph.
- 10. Write a program to find the solution for job sequencing with deadlines problems.
- 11. Write a program to find the solution for a 0-1 knapsack problem using dynamic programming.
- 12. Write a program to solve Sum of subsets problem for a given set of distinct numbers using

backtracking.

13. Implement N Queen's problem using Back Tracking.

References:

- 1. Y Daniel Liang, "Introduction to Programming using Python", Pearson.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.
- 3. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.

Online Learning Resources/Virtual Labs:

http://cse01-iiith.vlabs.ac.in/

http://peterindia.net/Algorithms.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-I Sem L T P C 0 0 3 1.5

(20A05302P)OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

Course Objectives:

- To introduce the concepts of Java.
- To Practice object-oriented programs and build java applications.
- To implement java programs for establishing interfaces.
- To implement sample programs for developing reusable software components.
- To establish database connectivity in java and implement GUI applications.

Course Outcomes:

After completion of the course, students will be able to

- Recognize the Java programming environment.
- Develop efficient programs using multithreading.
- Design reliable programs using Java exception handling features.
- Extend the programming functionality supported by Java.
- Select appropriate programming constructs to solve a problem.

List of Experiments:

Week-1

a. Installation of Java software, study of any Integrated development environment, Use Eclipse or Netbeans platform and acquaint with the various menus. Create a test project, add a test class and run it.

See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods and classes. Try debug step by step with java program to find prime numbers between 1 to n.

- b. Write a Java program that prints all real solutions to the quadratic equation $ax^2+bx+c=0$. Read in a, b, c and use the quadratic formula.
- c. Develop a Java application to generate Electricity bills. Create a class with the following members: Consumer no., consumer name, previous month reading, current month reading, type of EB connection (i.e domestic or commercial). Commute the bill amount using the following tariff.

If the type of the EB connection is domestic, calculate the amount to be paid as follows:

- First 100 units Rs. 1 per unit
- 101-200 units Rs. 2.50 per unit
- 201 -500 units Rs. 4 per unit
- > 501 units Rs. 6 per unit

If the type of the EB connection is commercial, calculate the amount to be paid as follows:

- First 100 units Rs. 2 per unit
- 101-200 units Rs. 4.50 per unit
- 201 -500 units Rs. 6 per unit
- > 501 units Rs. 7 per unit
- d. Write a Java program to multiply two given matrices.

Week-2

- a. Write Java program on use of inheritance, preventing inheritance using final, abstract classes.
- b. Write Java program on dynamic binding, differentiating method overloading and overriding.
- c. Develop a java application to implement currency converter (Dollar to INR, EURO to INR, Yen) using

Interfaces.

Week-3

- a. Write Java program that inputs 5 numbers, each between 10 and 100 inclusive. As each number is read, display it only if it's not a duplicate of any number already read display the complete set of unique values input after the user enters each new value.
 - b. Write a Java Program to create an abstract class named Shape that contains two integers and an empty method named print Area(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.
 - c. Write a Java program to read the time intervals (HH:MM) and to compare system time if the system Time between your time intervals print correct time and exit else try again to repute the same thing. By using StringToknizer class.

Week-4

- a. Write a Java program to implement user defined exception handling.
- b. Write java program that inputs 5 numbers, each between 10 and 100 inclusive. As each number is read display it only if it's not a duplicate of any number already read. Display the complete set of unique values input after the user enters each new value.

Week-5

- a. Write a Java program that creates a user interface to perform integer division. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 and Num2 were not integers, the program would throw a Number Format Exception. If Num2 were zero, the program would throw an Arithmetic Exception Display the exception in a message dialog box.
- b. Write a Java program that creates three threads. First thread displays —Good Morning every one second, the second thread displays —Hello every two seconds and the third thread displays —Welcome every three seconds.

Week-6

- a. Write a java program to split a given text file into n parts. Name each part as the name of the original file followed by .part where n is the sequence number of the part file.
- b. Write a Java program that reads a file name from the user, displays information about whether the file exists, whether the file is readable, or writable, the type of file and the length of the file in bytes.

Week-7

- a. Write a java program that displays the number of characters, lines and words in a text file.
- b. Write a java program that reads a file and displays the file on the screen with line number before each line.

Week-8

- a. Write a Java program that correctly implements the producer-consumer problem using the concept of inter thread communication.
- b. Develop a Java application for stack operation using Buttons and JOptionPane input and Message dialog box.
- c. Develop a Java application to perform Addition, Division, Multiplication and subtraction using the JOptionPane dialog Box and Textfields.

Week-9

- a. Develop a Java application for the blinking eyes and mouth should open while blinking.
- b. Develop a Java application that simulates a traffic light. The program lets the user select one of the three lights: Red, Yellow or Green with radio buttons. On selecting a button an appropriate message with —STOPI or —READYI or IGOI should appear above the buttons in the selected color. Initially, there is no message shown.

Week-10

- a. Develop a Java application to implement the opening of a door while opening man should present before hut and closing man should disappear.
- b. Develop a Java application by using JtextField to read decimal values and converting a decimal number into a binary number then print the binary value in another JtextField.

Week-11

- a. Develop a Java application that handles all mouse events and shows the event name at the center of the window when a mouse event is fired. Use adapter classes.
- b. Develop a Java application to demonstrate the key event handlers.

Week-12

a. Develop a Java application to find the maximum value from the given type of elements using a

generic function.

- b. Develop a Java application that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result.
- c . Develop a Java application for handling mouse events.

Week-13

a. Develop a Java application to establish a JDBC connection, create a table student with properties name, register number, mark1, mark2, mark3. Insert the values into the table by using java and display the information of the students at front end.

References:

- 1. P. J. Deitel, H. M. Deitel, "Java for Programmers", Pearson Education, PHI, 4th Edition, 2007.
- 2. P. Radha Krishna, "Object Oriented Programming through Java", Universities Press, 2nd Edition, 2007
- 3. Bruce Eckel, "Thinking in Java", Pearson Education, 4th Edition, 2006.
- 4. Sachin Malhotra, Saurabh Chaudhary, "Programming in Java", Oxford University Press, 5th Edition, 2010.

Online Learning Resources/Virtual Labs:

https://java-iitd.vlabs.ac.in/

http://peterindia.net/JavaFiles.html

(20A52201) UNIVERSAL HUMAN VALUES

Course Objectives:

The objective of the course is fourfold:

- Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- Strengthening of self-reflection.
- Development of commitment and courage to act.

Course Outcomes (CO):

By the end of the course,

- Students are expected to become more aware of themselves, and their surroundings (family, society, nature)
- They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- They would have better critical ability.
- They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- It is hoped that they would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

UNIT - I Course Introduction - Need, Basic Guidelines, Content and Process for Value Education 8 Hrs

Purpose and motivation for the course, recapitulation from Universal Human Values-I

Self-Exploration-what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration

Continuous Happiness and Prosperity- A look at basic Human Aspirations

Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority

Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario

Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

UNIT - II Understanding Harmony in the Human Being - Harmony in Myself 12 Hrs

Understanding human being as a co-existence of the sentient 'I' and the material 'Body'

Understanding the needs of Self ('I') and 'Body' - happiness and physical facility

Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)

Understanding the characteristics and activities of 'I' and harmony in 'I'

Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

UNIT - III Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship 8 Hrs

Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship

Understanding the meaning of Trust; Difference between intention and competence

Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship

Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals

Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

UNIT – IV Understanding Harmony in the Nature and Existence - Whole existence as Coexistence 10 Hrs

Understanding the harmony in the Nature

Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature

Understanding Existence as Co-existence of mutually interacting units in all-pervasive space Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

UNIT – V Implications of the above Holistic Understanding of Harmony on Professional Ethics 8 Hrs

Natural acceptance of human values

Definitiveness of Ethical Human Conduct

Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order

Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.

Case studies of typical holistic technologies, management models and production systems Strategy for transition from the present state to Universal Human Order:

a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers

b. At the level of society: as mutually enriching institutions and organizations

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

Textbooks:

- 1. R R Gaur, R Asthana, G P Bagaria, "A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. R R Gaur, R Asthana, G P Bagaria, "Teachers' Manual for A Foundation Course in Human Values and Professional Ethics", 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books:

Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amar kantak, 1999.

A. N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, 2004.

The Story of Stuff (Book).

Mohandas Karamchand Gandhi "The Story of My Experiments with Truth"

E. FSchumacher. "Small is Beautiful"

Slow is Beautiful –Cecile Andrews

J C Kumarappa "Economy of Permanence"

Pandit Sunderlal "Bharat Mein Angreji Raj"

Dharampal, "Rediscovering India"

Mohandas K. Gandhi, "Hind Swaraj or Indian Home Rule" India Wins Freedom - Maulana Abdul Kalam Azad Vivekananda - Romain Rolland(English) Gandhi - Romain Rolland (English)

MODE OF CONDUCT

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them. Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practicals are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignments and/or activities are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

(20A38303) DIGITAL PHOTOGRAPHY USING ADOBE PHOTOSHOP

(SKILL Oriented Course - I)

Course Objectives:

- Acquire the knowledge of manipulating images, Resize, Crop and Save images
- Understand different selection methods for an object
- Acquire the knowledge of creating, editing, deleting and managing Layers
- Learn various Filters used in Photoshop.
- Explore various techniques for adjusting colors and applying masks

Course Outcomes:

After completion of the course, students will be able to

- Edit/manipulate images and save as different image formats
- Select various objects from an image using selection tools
- Identify and separate different parts/objects of an image using layers
- Improve the image quality and other factors by applying different filters
- Adjust colors and masks in an image/photo

Module - 1

Get Started with Photoshop:

Open images, Get familiar with the work area, Learn how to zoom and pan, Undo a command, Save your work in different file formats.

Task: Download and Install Adobe Photoshop and try various layout components like menu, option bars, panels etc.

Module - 2

Change the image size:

Resize an image, Set the resolution, Crop and straighten an image, Expand the canvas.

Task: Take a photo and crop it as a passport size photograph with proper resolution.

Module - 3

Work with layers:

Understand layers, Learn layer basics, Resize a layer, Add images to a layered design, Unlock the

Background layer

Task: Take a background image and make a collage of multiple photos

Module - 4

Adjust the image quality:

Adjust brightness and contrast, Adjustcolorvibrance, Adjust hue and saturation, Learn about adjustment layers

Task: Practice various adjustments like brightness, contrast, hue, saturation, etc. to improve the quality of the image.

Module - 5

Make selections: Learn selection basics, Learn how to use the Quick Selection and Lasso tools, Finetune a selection.

Task: Open an image and select various objects like persons, buildings precisely using different selection tools.

Module - 6

Retouch images: Remove small objects, Add objects by cloning, Remove a large object

Task: Select an image and Use the Spot Healing Brush tool to remove objects, Use the Clone Stamp tool to add new objects

Module - 7

Use color: Work with brushes, Use foreground and background colors, Choosecolors using the Color Picker, the Color panel, or the Swatches panel.

Task: Practice different coloring tools and brushes by changing the color of objects like buildings, costumes, etc.

Module - 8

Advanced techniques for changing the color of an object:

Select an object, Create a layer group and apply a mask to the group, Apply a new color and adjust its hue and saturation, Adjust the brightness of the new color

Task: Apply color to an object using techniques that create a realistic color match and that bring the

object to life

Module - 9

Add text and shapes: Add Text, Edit Text, Create a graphic shape, Add a built-in custom shape

Task: Imagine & Design an Event in a symposium and create a poster for the event with different types of text and shapes.

Module - 10

Combine images: Add texture to an image, Add an object to an image with a layer mask, Replace a background using a layer mask.

Task: Select a group photo image and highlight one person and mask others(like highlighting a main artist among background artists).

Module - 11

Apply filters: Browse the Filter Gallery, Blur an image with Smart Filters, Add creative blur to photos

Task: Practice various filters available in photoshop like Distort, Noise, Pixelate, Render, Sharpen, etc.

Module - 12

Adjust and exaggerate facial features: Use Face-Aware Liquefy to change a person's face, Open an image, Enlarge the eyes, Adjust the shape of the nose, Widen the smile, Enlongate the face, Close Liquify and Save.

Task: Change a Person's face from normal facial expressions to smiling facial expressions.

References:

- 1. Laskevitch, Stephen. Adobe Photoshop. United States, Rocky Nook, Inc., 2020.
- 2. Faulkner, Andrew, and Chavez, Conrad. Adobe Photoshop Classroom in a Book (2020 Release). United Kingdom, Pearson Education, 2019.
- 3. Adobe Photoshop CC 2021 Release Classroom in a Book, Adobe Press. ISBN: 9780136904670
- 4. Digital Artistry and Special Effects with Photoshop by Jill Malone.
- Visual Alchemy: The Fine Art of Digital Montage by Catherine McIntyre.
 The Photoshop Workbook: Professional Retouching and Compositing Tips, Tricks, and Techniques by Glyn Dewis.

Online Learning Resources/Virtual Labs:

B.Tech. **R20 Regulations**

https://www.adobe.com/in/products/photoshop.html https://helpx.adobe.com/in/support/photoshop.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 3 0 0 3

(20A54406) MATHEMATICAL MODELLING & SIMULATION

Course Objectives:

This course focuses on what is needed to build simulation software environments, and not just building simulations using preexisting packages.

Course Outcomes (CO): Student will be able to

- Understand basic Model Forms.
- Understand basic Simulation Approaches.
- Evaluate handling Stepped and Event-based Time in Simulations.
- Distinguish Discrete versus Continuous Modeling.
- Apply Numerical Techniques.
- Calculate Sources and Propagation of Error.

UNIT I 8 Hrs

Simulation Basics-Handling Stepped and Event-based Time in Simulations-Discrete versus Continuous Modelling-Numerical Techniques-Sources and Propagation of Error

UNIT II 9 Hrs

Dynamical, Finite State, and Complex Model Simulations-Graph or Network Transitions Based Simulations-Actor Based Simulations-Mesh Based Simulations-Hybrid Simulations

UNIT III 8 Hrs

Converting to Parallel and Distributed Simulations-Partitioning the Data-Partitioning the Algorithms-Handling Inter-partition Dependencies

UNIT IV 8 Hrs

Probability and Statistics for Simulations and Analysis-Introduction to Queues and Random Noise-Random Variates Generation-Sensitivity Analysis

UNIT V 9 Hrs

Simulations Results Analysis and Viewing Tools-Display Forms: Tables, Graphs, and Multidimensional Visualization-Terminals, X and MS Windows, and Web Interfaces-Validation of Model Results.

Textbooks:

- 1. Mathematical modeling, JN Kapur, Newage publishers
- 2. Mathematical Modeling and Simulation: Introduction for Scientists and Engineers

by Kai Velten, Wiley Publishers

Reference Books:

Introduction to Mathematical Modeling and Computer Simulations
 By Vladimir Mityushev, Wojciech Nawalaniec Natalia Rylko Published by Chapman and Hall/CRC.

Online Learning Resources:

http://www.cse.chalmers.se/~dag/docs/matmodReport6.pdf

https://www.slideshare.net/arupparia/introduction-to-mathematical-modelling-42588379

https://www.slideshare.net/mailrenuka/simulation-for-queuing-problems-using-random-numbers

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 3 0 0 3

(20A05401T) DATABASE MANAGEMENT SYSTEMS

Course Objectives:

This course is designed to:

- Train in the fundamental concepts of database management systems, database modeling and design, SQL, PL/SQL and system implementation techniques.
- Enable students to model ER diagrams for any customized application
- Inducting appropriate strategies for optimization of queries.
- Provide knowledge on concurrency techniques
- Demonstrate the organization of Databases

Course Outcomes:

After completion of the course, students will be able to

- Design a database for a real-world information system
- Define transactions that preserve the integrity of the database
- Generate tables for a database
- Organize the data to prevent redundancy
- Pose queries to retrieve the information from the database.

UNIT I Introduction, Introduction to Relational Model 9Hrs

Introduction: Database systems applications, Purpose of Database Systems, view of Data, Database Languages, Relational Databases, Database Design, Data Storage and Querying, Transaction Management, Database Architecture, Data Mining and Information Retrieval, Specialty Databases, Database users and Administrators.

Introduction to Relational Model: Structure of Relational Databases, Database Schema, Keys, Schema Diagrams, Relational Query Languages, Relational Operations

UNIT II Introduction to SQL, Advanced SQL 9 Hrs

Introduction to SQL: Overview of the SQL Query Language, SQL Data Definition, Basic Structure of SQL Queries, Additional Basic Operations, Set Operations, Null Values, Aggregate Functions, Nested Sub-queries,

8 Hrs

Modification of the Database. Intermediate SQL: Joint Expressions, Views, Transactions, Integrity Constraints, SQL Data types and schemas, Authorization.

Advanced SQL: Accessing SQL from a Programming Language, Functions and Procedures, Triggers, Recursive Queries, OLAP, Formal relational query languages.

UNIT III Database Design and the E-R Model, Relational Database Design 8Hrs

Database Design and the E-R Model: Overview of the Design Process, The Entity-Relationship Model, Constraints, Removing Redundant Attributes in Entity Sets, Entity-Relationship Diagrams, Reduction to Relational Schemas, Entity-Relationship Design Issues.

Relational Database Design:

Features of Good Relational Designs, Atomic Domains and First Normal Form, Decomposition Using Functional Dependencies, Functional-Dependency Theory, Algorithms for Decomposition, Decomposition Using Multivalued Dependencies, More Normal Forms.

UNIT IV Query Processing, Query optimization

Query Processing: Overview, Measures of Query cost, Selection operation, sorting, Join Operation, other operations, Evaluation of Expressions.

Query optimization: Overview, Transformation of Relational Expressions, Estimating statistics of Expression results, Choice of Evaluation Plans, Materialized views, Advanced Topics in Query Optimization.

UNIT V Transaction Management, Concurrency Control, Recovery System 10Hrs

Transaction Management:

Transactions: Concept, A Simple Transactional Model, Storage Structures, Transaction Atomicity and Durability, Transaction Isolation, Serializability, Isolation and Atomicity, Transaction Isolation Levels, Implementation of Isolation Levels, Transactions as SQL Statements.

Concurrency Control: Lock-based Protocols, Deadlock Handling, Multiple granularity, Timestamp-based Protocols, and Validation-based Protocols.

Recovery System: Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm, Buffer Management, Failure with Loss of Nonvolatile Storage, Early Lock Release and Logical Undo Operations.

Textbooks:

1. A.Silberschatz, H.F.Korth, S.Sudarshan, "Database System Concepts", 6/e, TMH 2019

Reference Books:

- 1. Database Management System, 6/e RamezElmasri, Shamkant B. Navathe, PEA
- 2. Database Principles Fundamentals of Design Implementation and Management, Carlos Coronel, Steven Morris, Peter Robb, Cengage Learning.
- 3. Database Management Systems, 3/e, Raghurama Krishnan, Johannes Gehrke, TMH

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21 cs04/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 3 0 0 3

(20A05402T) OPERATING SYSTEMS

Course Objectives:

The course is designed to

- Understand basic concepts and functions of operating systems
- Understand the processes, threads and scheduling algorithms.
- Provide good insight on various memory management techniques
- Expose the students with different techniques of handling deadlocks
- Explore the concept of file-system and its implementation issues
- Familiarize with the basics of the Linux operating system
- Implement various schemes for achieving system protection and security

Course Outcomes (CO):

- After completion of the course, students will be able to
- Realize how applications interact with the operating system
- Analyze the functioning of a kernel in an Operating system.
- Summarize resource management in operating systems
- Analyze various scheduling algorithms
- Examine concurrency mechanism in Operating Systems
- Apply memory management techniques in the design of operating systems
- Understand the functionality of the file system
- Compare and contrast memory management techniques.
- Understand deadlock prevention and avoidance.
- Perform administrative tasks on Linux based systems.

UNIT I Operating Systems Overview, System Structures 8Hrs

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Open-Source Operating Systems

System Structures: Operating System Services, User and Operating-System Interface, systems calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Operating system debugging, System Boot.

UNIT II Process Concept, Multithreaded Programming, Process 10Hrs

Scheduling, Inter-process Communication

Process Concept: Process scheduling, Operations on processes, Inter-process communication, Communication in client server systems.

Multithreaded Programming: Multithreading models, Thread libraries, Threading issues, Examples.

Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling, Thread scheduling, Examples.

Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion with busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers, Classical IPC Problems - Dining philosophers problem, Readers and writers problem.

UNIT III Memory-Management Strategies, Virtual Memory Management Lecture 8Hrs

Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation, Paging, Segmentation, Examples.

Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page replacement, Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation, Examples.

UNIT IV Deadlocks, File Systems

Lecture 9Hrs

Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock detection And recovery, Deadlock avoidance, Deadlock prevention.

File Systems: Files, Directories, File system implementation, management and optimization.

Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling, RAID structure, Stable storage implementation.

UNIT V System Protection, System Security

Lecture 8Hrs

System Protection: Goals of protection, Principles and domain of protection, Access matrix, Access control, Revocation of access rights.

System Security: Introduction, Program threats, System and network threats, Cryptography as a security, User authentication, implementing security defenses, firewalling to protect systems and networks, Computer security classification.

Case Studies: Linux, Microsoft Windows.

Textbooks:

- 1. Silberschatz A, Galvin P B, and Gagne G, Operating System Concepts, 9th edition, Wiley, 2016.
- 2. Tanenbaum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008.

(Topics: Inter-process Communication and File systems.)

Reference Books:

- 1. Tanenbaum A S, Woodhull A S, Operating Systems Design and Implementation, 3rd edition, PHI, 2006.
- 2. Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata McGraw-Hill, 2012.
- 3. Stallings W, Operating Systems -Internals and Design Principles, 6th edition, Pearson Education, 2009
- 4. Nutt G, Operating Systems, 3rd edition, Pearson Education, 2004

Online Learning Resources:

https://nptel.ac.in/courses/106/106/106106144/

http://peterindia.net/OperatingSystems.html

(20A38401T) VISUAL DESIGN & COMMUNICATION

Course Objectives:

- To understand the principles of the visual language and their semantic use.
- To communicate more concisely and in a visually appropriate manner, it is necessary to use commonly understood principles, perspective and design layout standards.
- To understand the fundamentals of Typography and Photography

Course Outcomes:

After completion of the course, students will be able to

- Create visual compositions using basic elements and apply appropriate principles of visual composition to communicate ideas.
- Develop the ability to perceive, visualize and communicate visual elements as visual narratives.
- Apply the visual dynamics of visual language in Typography, Photography and Videography.
- Develop the ability to address simple communication problems through a visualization process and construct mental imageries
- Execute design solutions using appropriate software programmes.

UNIT I Introduction to Visual Design

Lecture 8Hrs

Introduction to Visual Design: The importance of understanding visual language and its relation in context to nature and environment.

Elements of Visual Language: Exploring and understanding Dots, Lines, Forms, Space, Pattern, Texture and Colour as an elements of visual language.

UNIT II Introduction to the Principles of Visual Language Lecture 8Hrs

Introduction to the Principles of Visual Language: Visual explorations and experiments with Form, Colour, and Space, Texture, in relation to the context and environments – Concepts of harmony, balance, contrast, proportion, order, symmetry, asymmetry, rhythm, tension, juxtaposition, proximity, size, scale, proportion, orientation, alignment, variety, gradation, dominance, subordination, transition etc.

UNIT III Introduction to Fundamentals of Typography Lecture 9Hrs

Introduction to Fundamentals of Typography: Introduction to Type and its History-Type as a form and means of communication in our environment-Introduction to Indian type: Vernacular letterforms-Classification of types: Typefaces, type families and type designers-Anatomy of the type: x-height, ascenders, descenders, counter, cap-height, baseline, etc-Typographic variables: Kerning,

tracking, leading, spacing etc.-Semantics of type: Legibility & readability issues in type and meaning attributed to type. 4h. Expressive Typography-Introduction to printing techniques

UNIT IV Introduction to Photography

Lecture 9Hrs

Introduction to Photography: Introduction and Orientation: Art and Science of Photography. Drawing out parallels / differences between the EYE and the CAMERA-Camera: Understanding the various controls on a Digital SLR Camera Features and Details. Shooting Modes. Aperture and Depth of Field. Shutter Speed. Critical Shutter Speeds and Effects- Exposure: Exposure as function of Quantity of Light and Time. Getting used to shooting in Manual Mode and learning to measure light using the camera's built-in exposure meter-Film Speed/Sensor Sensitivity: Understanding the role of sensitivity in Exposure. ISO/ASA and Digital Noise-Lenses: Different Types of Lenses. Classification of Lenses by Focal Lengths. Angle of View. Fixed Focal Length and Zoom Lenses. Close up and Macro Lenses-Light and Color Temperature- Digital Post-Production: Introduction to File-Formats. RAW vs.JPG. Understanding resolution, resizing and basic image post processing using Photoshop. Exploring the software to visualize and create digital mosaics.

UNIT V Introduction to Videography

Lecture 9Hrs

Introduction to Videography:Concept development, Storyboarding-Video Shooting - Framing, Camera movement etcVideo Editing, Defining communication-Sender, Channel and Receiver-Semiotics - Study of sign process (semiosis), meaningmaking and meaningful communication. Sign, Signifier, Signified-Denotation and Connotation-Story, narrative and see different perspectives-Identifying problems, opportunities and improvements. Differentiating problem, need and conflict-Persona study-Scenario study

Textbooks:

1. Wallschlaeger, Charles, &Busic-Synder, Cynthia, Basic Visual Concepts and Principles for Artists, Architects and Designers, McGraw-Hill, (1992).

Reference Books:

- 1. Buxton, Bill, Sketching User Experience: Getting the Design Right and the Right Design (Interactive Technologies), Morgan Kaufmann, (2007).
- 2. Caplin, Steve; Banks, Adam, The Complete Guide to Digital Illustration, Publisher: Watson Guptill Publications, (2003).
- 3. Demers, Owen, Digital Texturing & Painting, Publisher: New Riders Press; Bk&CD-RomEdition, (2001).
- 4. Cairo, Alberto, The Functional Art. New Riders. (2013).
- 5. Pogany, Willy, The Art of Drawing, Publisher: Madison Books, (1996).

Online Learning Resources:

https://nptel.ac.in/courses/124107002

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 3 0 0 3

(20A52301) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

(Humanities Elective-I)

Course Objectives:

- To inculcate the basic knowledge of micro economics and financial accounting
- To make the students learn how demand is estimated for different products, input-output relationship for optimizing production and cost
- To Know the Various types of market structure and pricing methods and strategy
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on accounting and to explain the process of preparing financial statements

Course Outcomes:

- Define the concepts related to Managerial Economics, financial accounting and management.
- Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets
- Apply the Concept of Production cost and revenues for effective Business decision
- Analyze how to invest their capital and maximize returns
- Evaluate the capital budgeting techniques
- Develop the accounting statements and evaluate the financial performance of business entity.

UNIT I Managerial Economics

Introduction – Nature, meaning, significance, functions, and advantages. Demand-Concept, Function, Law of Demand - Demand Elasticity- Types – Measurement. Demand Forecasting- Factors governing Forecasting, Methods. Managerial Economics and Financial Accounting and Management.

UNIT II Production and Cost Analysis

Introduction – Nature, meaning, significance, functions and advantages. Production Function – Least-cost combination – Short run and Long run Production Function – Isoquants and Isocosts, MRTS – Cobb-Douglas Production Function - Laws of Returns - Internal and External Economies of scale. Cost & Break-Even Analysis - Cost concepts and Cost behavior- Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems)-Managerial significance and limitations of Break-Even Analysis.

UNIT III Business Organizations and Markets

Introduction – Nature, meaning, significance, functions and advantages. Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises. Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition Monopoly-Monopolistic Competition—Oligopoly-Price-Output Determination - Pricing Methods and Strategies

UNIT IV Capital Budgeting

Introduction – Nature, meaning, significance, functions and advantages. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting– Features, Proposals, Methods and Evaluation. Projects – Pay Back Method, Accounting Rate of Return (ARR) Net Present Value (NPV) Internal Rate Return (IRR) Method (sample problems)

UNIT V Financial Accounting and Analysis

Introduction – Nature, meaning, significance, functions and advantages. Concepts and Conventions-Double-Entry Book Keeping, Journal, Ledger, Trial Balance-Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis* - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

- 1. Varshney&Maheswari: Managerial Economics, Sultan Chand, 2013.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH, 2019

Reference Books:

- 1. Ahuja Hl Managerial economics Schand, 3/e, 2013
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, New Age International, 2013.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e, New Delhi.
- Domnick Salvatore: Managerial Economics in a Global Economy, Cengage,
 2013.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt

https://www.slideshare.net/rossanz/production-and-cost-45827016

https://www.slideshare.net/darkyla/business-organizations-19917607

 $\underline{https://www.slideshare.net/balarajbl/market-and-classification-of-market}$

 $\underline{https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396}$

https://www.slideshare.net/ashu1983/financial-accounting

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 3 0 0 3

(20A52302) ORGANISATIONAL BEHAVIOUR

(Humanities Elective-I)

Course Objectives:

- To enable student's comprehension of organizational behavior
- To offer knowledge to students on self-motivation, leadership and management
- To facilitate them to become powerful leaders
- To Impart knowledge about group dynamics
- To make them understand the importance of change and development

Course Outcomes:

- Define the Organizational Behaviour, its nature and scope.
- Understand the nature and concept of Organizational behaviour
- Apply theories of motivation to analyse the performance problems
- Analyse the different theories of leadership
- Evaluate group dynamics
- Develop as powerful leader

UNIT I Introduction to Organizational Behavior

Meaning, definition, nature, scope and functions - Organizing Process - Making organizing effective -Understanding Individual Behaviour -Attitude -Perception - Learning - Personality.

UNIT II Motivation and Leading

Theories of Motivation- Maslow's Hierarchy of Needs - Hertzberg's Two Factor Theory - Vroom's theory of expectancy - Mc Cleland's theory of needs-Mc Gregor's theory X and theory Y- Adam's equity theory - Locke's goal setting theory- Alderfer's ERG theory .

UNIT III Organizational Culture

Introduction – Meaning, scope, definition, Nature - Organizational Climate - Leadership - Traits Theory–Managerial Grid - Transactional Vs Transformational Leadership - Qualities of good Leader - Conflict Management -Evaluating Leader- Women and Corporate leadership.

UNIT IV Group Dynamics

Introduction – Meaning, scope, definition, Nature- Types of groups - Determinants of group behavior - Group process – Group Development - Group norms - Group cohesiveness - Small Groups - Group

decision making - Team building - Conflict in the organization- Conflict resolution

UNIT V Organizational Change and Development

Introduction –Nature, Meaning, scope, definition and functions- Organizational Culture - Changing the Culture – Change Management – Work Stress Management - Organizational management – Managerial implications of organization's change and development

Textbooks:

- 1. Luthans, Fred, Organisational Behaviour, McGraw-Hill, 12 Th edition 2011
- 2. P Subba Ran, Organisational Behaviour, Himalya Publishing House 2017

Reference Books:

- 1. McShane, Organizational Behaviour, TMH 2009
- 2. Nelson, Organisational Behaviour, Thomson, 2009.
- 3. Robbins, P. Stephen, Timothy A. Judge, Organisational Behaviour, Pearson 2009.
- 4. Aswathappa, Organisational Behaviour, Himalaya, 2009

Online Learning Resources:

httphttps://www.slideshare.net/Knight1040/organizational-culture-9608857s://www.slideshare.net/AbhayRajpoot3/motivation-165556714

 $\underline{https://www.slideshare.net/harshrastogi1/group-dynamics-159412405}$

https://www.slideshare.net/vanyasingla1/organizational-change-development-26565951

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 3 0 0 3

(20A52303) BUSINESS ENVIRONMENT

(Humanities Elective-I)

Course Objectives:

- To make the student to understand about the business environment
- To enable them in knowing the importance of fiscal and monitory policy
- To facilitate them in understanding the export policy of the country
- To Impart knowledge about the functioning and role of WTO
- To Encourage the student in knowing the structure of stock markets

Course Outcomes:

- Define Business Environment and its Importance.
- Understand various types of business environment.
- Apply the knowledge of Money markets in future investment
- Analyse India's Trade Policy
- Evaluate fiscal and monitory policy
- Develop a personal synthesis and approach for identifying business opportunities

UNIT I Overview of Business Environment

Introduction — meaning Nature, Scope, significance, functions and advantages. Types-Internal &External, Micro and Macro. Competitive structure of industries -Environmental analysis-advantages & limitations of environmental analysis & Characteristics of business.

UNIT II Fiscal & Monetary Policy

Introduction – Nature, meaning, significance, functions and advantages. Public Revenues - Public Expenditure - Evaluation of recent fiscal policy of GOI. Highlights of Budget- Monetary Policy - Demand and Supply of Money –RBI -Objectives of monetary and credit policy - Recent trends- Role of Finance Commission.

UNIT III India's Trade Policy

Introduction – Nature, meaning, significance, functions and advantages. Magnitude and direction of Indian International Trade - Bilateral and Multilateral Trade Agreements - EXIM policy and role of EXIM bank -Balance of Payments - Structure & Major components - Causes for Disequilibrium in Balance of Payments - Correction measures.

UNIT IV World Trade Organization

Introduction – Nature, significance, functions and advantages. Organization and Structure - Role and functions of WTO in promoting world trade - GATT -Agreements in the Uruguay Round –TRIPS, TRIMS - Disputes Settlement Mechanism - Dumping and Anti-dumping Measures.

UNIT V Money Markets and Capital Markets

Introduction – Nature, meaning, significance, functions and advantages. Features and components of Indian financial systems - Objectives, features and structure of money markets and capital markets - Reforms and recent development – SEBI – Stock Exchanges - Investor protection and role of SEBI, Introduction to international finance.

Textbooks:

- 1. Francis Cherunilam (2009), International Business: Text and Cases, Prentice Hall of India.
- 2. K. Aswathappa, Essentials of Business Environment: Texts and Cases & Exercises 13th Revised Edition.HPH2016

Reference Books:

- 1.K. V. Sivayya, V. B. M Das (2009), Indian Industrial Economy, Sultan Chand Publishers, New Delhi, India.
- 2. Sundaram, Black (2009), International Business Environment Text and Cases, Prentice Hall of India, New Delhi, India.
- 3. Chari. S. N (2009), International Business, Wiley India.
- 4.E. Bhattacharya (2009), International Business, Excel Publications, New Delhi.

Online Learning Resources:

https://www.slideshare.net/ShompaDhali/business-environment-53111245

https://www.slideshare.net/rbalsells/fiscal-policy-ppt

https://www.slideshare.net/aguness/monetary-policy-presentationppt

https://www.slideshare.net/DaudRizwan/monetary-policy-of-india-69561982

https://www.slideshare.net/ShikhaGupta31/indias-trade-policyppt

https://www.slideshare.net/viking2690/wto-ppt-60260883

https://www.slideshare.net/prateeknepal3/ppt-mo

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 0 0 3 1.5

20A05401P DATABASE MANAGEMENT SYSTEMS LABORATORY

Course Objectives:

- To implement the basic knowledge of SQL queries and relational algebra.
- To construct database models for different database applications.
- To apply normalization techniques for refining of databases.
- To practice various triggers, procedures, and cursors usingPL/SQL.
- To design and implementation of a database for an organization

Course Outcomes:

After completion of the course, students will be able to

- Design database for any real world problem
- Implement PL/SQL programs
- Define SQL queries
- Decide the constraints
- Investigate for data inconsistency

List of Experiments:

Week-1: CREATION OF TABLES

1. Create a table called Employee with the following structure.

Name	Type
Empno	Number
Ename	Varchar2(20)
Job	Varchar2(20)
Mgr	Number
Sal	Number

- a. Add a column commission with domain to the Employee table.
- b. Insert any five records into the table.
- c. Update the column details of job
- d. Rename the column of Employ table using alter command.
- e. Delete the employee whose empno is 19.
- 2. Create department table with the following structure.

Name	Type
Deptno	Number
Deptname	Varchar2(20)

location	Varchar2(20)
iocation	varciiai 2(20)

- a. Add column designation to the department table.
- b. Insert values into thetable.
- c. List the records of emp table grouped bydeptno.
- d. Update the record where deptno is9.
- e. Delete any column data from thetable

3. Create a table called Customertable

Name	Туре
Cust name	Varchar2(20)
Cust street	Varchar2(20)
Cust city	Varchar2(20)

- a. Insert records into thetable.
- b. Add salary column to thetable.
- c. Alter the table columndomain.
- d. Drop salary column of the customertable.
- e. Delete the rows of customer table whose ust_city is 'hyd'.
- f. Create a table called branchtable.

Name	Type
Branch name	Varchar2(20)
Branch city	Varchar2(20)
asserts	Number

- 4. Increase the size of data type for asserts to the branch.
 - a. Add and drop a column to the branch table.
 - b. Insert values to the table.
 - c. Update the branch name column
 - d. Delete any two columns from the table

5. Create a table called sailor table

Name	Туре
Sid	Number
Sname	Varchar2(20)

rating Varchar2(20)	
---------------------	--

- a. Add column age to the sailor table.
- b. Insert values into the sailor table.
- c. Delete the row with rating>8.
- d. Update the column details of sailor.
- e. Insert null values into the table.
- 6. Create a table called reserves table

Name	Туре	
Boat id	Integer	
sid	Integer	
day	Integer	

- a. Insert values into the reservestable.
- b. Add column time to the reservestable.
- c. Alter the column day data type todate.
- d. Drop the column time in thetable.
- e. Delete the row of the table with somecondition.

Week-2: QUERIES USING DDL AND DML

- 1. a. Create a user and grant all permissions to theuser.
 - b. Insert the any three records in the employee table and use rollback. Check theresult.
 - c. Add primary key constraint and not null constraint to the employeetable.
 - d. Insert null values to the employee table and verify theresult.
- 2. a. Create a user and grant all permissions to theuser.
 - b. Insert values in the department table and usecommit.
 - c. Add constraints like unique and not null to the departmenttable.
 - d. Insert repeated values and null values into thetable.
- 3. a. Create a user and grant all permissions to theuser.
 - b. Insert values into the table and use commit.
 - c. Delete any three records in the department table and use rollback.
 - d. Add constraint primary key and foreign key to thetable.
- 4. a. Create a user and grant all permissions to theuser.
 - b. Insert records in the sailor table and usecommit.
 - c. Add save point after insertion of records and verify save point.
 - d. Add constraints not null and primary key to the sailortable.
- 5. a. Create a user and grant all permissions to theuser.
 - b. Use revoke command to remove userpermissions.
 - c. Change password of the usercreated.
 - d. Add constraint foreign key and notnull.
- 6. a. Create a user and grant all permissions to theuser.
 - b. Update the table reserves and use savepointandrollback.

- c. Add constraint primary key, foreign key and not null to the reserves table
- **d.** Delete constraint not null to the tablecolumn

Week-3:QUERIES USING AGGREGATE FUNCTIONS

- 1. a. By using the group by clause, display the enames who belongs to deptno 10 alongwithaveragesalary.
 - b. Display lowest paid employee details under eachdepartment.
 - c. Display number of employees working in each department and their departmentnumber.
 - d. Using built in functions, display number of employees working in each department and their department name from dept table. Insert deptname to dept table and insert deptname for each row, do the required thing specified above.
 - e. List all employees which start with either B or C.
 - f. Display only these ename of employees where the maximum salary is greater than or equal to 5000.
- 2. a. Calculate the average salary for each differentjob.
 - b. Show the average salary of each job excludingmanager.
 - c. Show the average salary for all departments employing more than threepeople.
 - d. Display employees who earn more than thelowest salary in department 30
 - e. Show that value returned by sign (n)function.
 - f. How many days between day of birth to currentdate
- 3. a. Show that two substring as singlestring.
 - b. List all employee names, salary and 15% rise insalary.
 - c. Display lowest paid emp details under eachmanager
 - d. Display the average monthly salary bill for eachdeptno.
 - e. Show the average salary for all departments employing more than twopeople.
 - f. By using the group by clause, display the eid who belongs to deptno 05 along withaverage salary.
- 4. a. Count the number of employees in department 20
 - b. Find the minimum salary earned byclerk.
 - c. Find minimum, maximum, average salary of allemployees.
 - d. List the minimum and maximum salaries for each jobtype.
 - e. List the employee names in descendingorder.
 - f. List the employee id, names in ascending order byempid.
- 5. a. Find the sids ,names of sailors who have reserved all boats called "INTERLAKE Find the age of youngest sailor who is eligible to vote for each rating level with at least two such sailors.
 - b. Find the sname, bid and reservation date for each reservation.
 - c. Find the ages of sailors whose name begin and end with B and has at least 3characters.
 - d. List in alphabetic order all sailors who have reserved redboat.
 - e. Find the age of youngest sailor for each ratinglevel.
- 6. a. List the Vendors who have delivered products within 6 months from orderdate.
 - b. Display the Vendor details who have supplied both Assembled and Subparts.
 - c. Display the Sub parts by grouping the Vendor type (Local or NonLocal).
 - d. Display the Vendor details in ascendingorder.
 - e. Display the Sub part which costs more than any of the Assembledparts.
 - f. Display the second maximum cost Assembledpart

Week-4: PROGRAMS ON PL/SQL

- 1. a. Write a PL/SQL program to swaptwonumbers.
 - b. Write a PL/SQL program to find the largest of threenumbers.

- 2. a. Write a PL/SQL program to find the total and average of 6 subjects and display thegrade.
 - b. Write a PL/SQL program to find the sum of digits in a givennumber.
- 3. a. Write a PL/SQL program to display the number in reverseorder.
 - b. Writea PL/SQLprogramtocheckwhetherthegivennumberisprimeornot.
- 4. a. Write a PL/SQL program to find the factorial of a givennumber.
 - b. Write a PL/SQL code block to calculate the area of a circle for a value of radius varying from 3 to 7. Store the radius and the corresponding values of calculated area in an empty table named areas, consisting of two columns radius andarea.
- 5. a. Write a PL/SQL program to accept a string and remove the vowels from the string. (When 'hello' passed to the program it should display 'Hll' removing e and o from the worldHello).
 - b. Write a PL/SQL program to accept a number and a divisor. Make sure the divisor is less than or equal to 10. Else display an error message. Otherwise Display the remainderin words.

Week-5: PROCEDURES AND FUNCTIONS

- 1. Write a function to accept employee number as parameter and return Basic +HRA together as single column.
- 2. Accept year as parameter and write a Function to return the total net salary spent for a givenyear.
- 3. Create a function to find the factorial of a given number and hence findNCR.
- 4. Write a PL/SQL block o pint prime Fibonacci series using localfunctions.
- 5. Create a procedure to find the lucky number of a given birthdate.
- 6. Create function to the reverse of givennumber

Week-6: TRIGGERS

1. Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old values and newvalues:

CUSTOMERS table:

ID	NAME	AGE	ADDRESS	SALARY
1	Alive	24	Khammam	2000
2	Bob	27	Kadappa	3000
3	Catri	25	Guntur	4000
4	Dena	28	Hyderabad	5000
5	Eeshwar	27	Kurnool	6000
6	Farooq	28	Nellore	7000

2. Creation of insert trigger, delete trigger, update trigger practice triggers using the passenger database.

Passenger(Passport_ id INTEGER PRIMARY KEY, Name VARCHAR (50) NotNULL, Age Integer Not NULL, Sex Char, Address VARCHAR (50) NotNULL):

- a. Write a Insert Trigger to check the Passport_id is exactly six digits ornot.
- b. Write a trigger on passenger to display messages '1 Record is inserted', '1 record is deleted', '1 record is updated' when insertion, deletion and updation are done on passengerrespectively.
- 3. Insert row in employee table using Triggers. Every trigger is created with name any trigger have same name must be replaced by new name. These triggers can raised before insert, update or delete rows on data base. The main difference between a trigger and a stored procedure is that the former is attached to a table and is only fired when an INSERT, UPDATE or DELETEoccurs.
- 4. Convert employee name into uppercase whenever an employee record is inserted or updated. Trigger to fire before the insert orupdate.

- 5. Trigger before deleting a record from emp table. Trigger will insert the row to be deleted into table called delete _emp and also record user who has deleted the record and date and time ofdelete.
- **6.** Create a transparent audit system for a table CUST_MSTR. The system must keep track of the records that are being deleted orupdated

Week-7:PROCEDURES

- 1. Create the procedure for palindrome of givennumber.
- 2. Create the procedure for GCD: Program should load two registers with two Numbers and then apply the logic for GCD of two numbers. GCD of two numbers is performed by dividing the greater number by the smaller number till the remainder is zero. If it is zero, the divisor is the GCD if not the remainder and the divisors of the previous division are the new set of two numbers. The process is repeated by dividing greater of the two numbers by the smaller number till the remainder is zero and GCD is found.
- 3. Write the PL/SQL programs to create the procedure for factorial of givennumber.
- 4. Write the PL/SQL programs to create the procedure to find sum of N naturalnumber.
- 5. Write the PL/SQL programs to create the procedure to find Fibonacciseries.
- 6. Write the PL/SQL programs to create the procedure to check the given number is perfect ornot

Week-8: CURSORS

- 1. Write a PL/SQL block that will display the name, dept no, salary of fist highest paidemployees.
- 2. Update the balance stock in the item master table each time a transaction takes place in the item transaction table. The change in item master table depends on the item id is already present in the item master then update operation is performed to decrease the balance stock by the quantity specified in the item transaction in case the item id is not present in the item master table then the record is inserted in the item mastertable.
- 3. Write a PL/SQL block that will display the employee details along with salary using cursors.
- 4. To write a Cursor to display the list of employees who are working as a ManagersorAnalyst.
- 5. To write a Cursor to find employee with given job anddeptno.
- 6. Write a PL/SQL block using implicit cursor that will display message, the salaries of all the employees in the 'employee' table are updated. If none of the employee's salary are updated we getamessage 'None of the salaries were updated'. Else we get a message like for example, 'Salaries for 1000 employees are updated' if there are 1000 rows in 'employee' table

Week-9: CASE STUDY: BOOK PUBLISHING COMPANY

A publishing company produces scientific books on various subjects. The books are written by authors who specialize in one particular subject. The company employs editors who, not necessarily being specialists in a particular area, each take sole responsibility for editing one or more publications.

A publication covers essentially one of the specialist subjects and is normally written by a single author. When writing a particular book, each author works with on editor, but may submit another work for publication to be supervised by other editors. To improve their competitiveness, the company tries to employ a variety of authors, more than one author being a specialist in a particular subject for the above case study, do thefollowing:

- 1. Analyze the datarequired.
- 2. Normalize theattributes.

Create the logical data model using E-R diagrams

Week-10: CASE STUDY GENERAL HOSPITAL

AGeneralHospitalconsistsofanumberofspecializedwards(suchasMaternity,Pediatric,Oncology, etc.). Each ward hosts a number of patients, who were admitted on the recommendation of their

ownGP and confirmed by a consultant employed by the Hospital. On admission, the personal details of every patient are recorded. A separate register is to be held to store the information of the tests undertaken and the results of a prescribed treatment. A number of tests may be conducted for each patient. Each patient is assigned to one leading consultant but may be examined by another doctor, if required. Doctors are specialists in some branch of medicine and may be leading consultants for a number of patients, not necessarily from the same ward. For the above case study, do the following.

- 1. Analyze the datarequired.
- 2. Normalize theattributes.

Create the logical data model using E-R diagrams

Week-11: CASE STUDY: CAR RENTAL COMPANY

A database is to be designed for a car rental company. The information required includes a description of cars, subcontractors (i.e. garages), company expenditures, company revenues and customers. Cars are to be described by such data as: make, model, year of production, engine size, fuel type, number of passengers, registration number, purchase price, purchase date, rent price and insurance details. It is the company policy not to keep any car for a period exceeding one year. All major repairs and maintenance are done by subcontractors (i.e. franchised garages), with whom CRC has long-term agreements. Therefore the data about garages to be kept in the database includes garage names, addresses, range of services and the like. Some garages require payments immediately after a repair has been made; with others CRC has made arrangements for credit facilities. Company expenditures are to be registered for all outgoings connected with purchases, repairs, maintenance, insurance etc. Similarly the cash inflow coming from all sources: Car hire, car sales, insurance claims must be kept of file. CRC maintains a reasonably stable client base. For this privileged category of customers special creditcard facilities are provided. These customers may also book in advance a particular car. These reservations can be made for any period of time up to one month. Casual customers must pay a deposit for an estimated time of rental, unless they wish to pay by credit card. All major credit cards are accepted. Personal details such as name, address, telephone number, driving license, number about each customer are kept in the database. For the above case study, do thefollowing:

- 1. Analyze the datarequired.
- 2. Normalize theattributes.

Create the logical data model using E-R diagrams

Week-12: CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM

A database is to be designed for a college to monitor students' progress throughout their course of study. The students are reading for a degree (such as BA, BA (Hons.) M.Sc., etc) within the framework of the modular system. The college provides a number of modules, each being characterized by its code, title, credit value, module leader, teaching staff and the department they come from. A module is coordinated by a module leader who shares teaching duties with one or more lecturers. A lecturer may teach (and be a module leader for) more than one module. Students are free to choose any module they wish but the following rules must be observed: Some modules require pre- requisites modules and some degree programs have compulsory modules. The database also to contain some information about studentsincludingtheirnumbers,names,addresses,degreestheyreadfor,andtheirpastperformance i.e. modules taken and examination results. For the above case study, do the following:

- 1. Analyze the datarequired.
- 2. Normalize theattributes.
- 3. Create the logical data model i.e., ERdiagrams.
- 4. Comprehend the data given in the case study by creating respective tables with primary keys and foreign keys whereverrequired.
- 5. Insert values into the tables created (Be vigilant about Master- Slave tables).
- 6. Display the Students who have taken M.Sccourse

- 7. Display the Module code and Number of Modules taught by eachLecturer.
- 8. Retrieve the Lecturer names who are not Module Leaders.
- 9. Display the Department name which offers 'English 'module.
- 10. Retrieve the Prerequisite Courses offered by every Department (with Department names).
- 11. Present the Lecturer ID and Name who teaches 'Mathematics'.
- 12. Discover the number of years a Module is taught.
- 13. List out all the Faculties who work for 'Statistics 'Department.
- 14. List out the number of Modules taught by each Module Leader.
- 15. List out the number of Modules taught by a particular Lecturer.
- 16. Create a view which contains the fields of both Department and Module tables. (Hint-The fields like Module code, title, credit, Department code and its name).
- 17. Update the credits of all the prerequisite courses to 5. Delete the Module 'History' from the Module table.

References:

- 1. RamezElmasri, Shamkant, B. Navathe, "Database Systems", Pearson Education, 6th Edition, 2013.
- 2. Peter Rob, Carles Coronel, "Database System Concepts", Cengage Learning, 7th Edition, 2008. Online Learning Resources/Virtual Labs:

http://www.scoopworld.in http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

(20A05402P) OPERATING SYSTEMS LAB

Course Objectives:

- To familiarize students with the architecture of OS.
- To provide necessary skills for developing and debugging CPU Scheduling algorithms.
- To elucidate the process management and scheduling and memory management.
- To explain the working of an OS as a resource manager, file system manager, process manager, memory manager, and page replacement tool.
- To provide insights into system calls, file systems and deadlock handling.

Course Outcomes:

After completion of the course, students will be able to

- Trace different CPU Scheduling algorithms (L2).
- Implement Bankers Algorithms to Avoid and prevent the Dead Lock (L3).
- Evaluate Page replacement algorithms (L5).
- Illustrate the file organization techniques (L4).
- Illustrate shared memory process (L4).
- Design new scheduling algorithms (L6)

List of Experiments:

- 1. Practicing of Basic UNIX Commands.
- 2. Write programs using the following UNIX operating system calls

Fork, exec, getpid, exit, wait, close, stat, opendir and readdir

- 3. Simulate UNIX commands like cp, ls, grep, etc.,
- 4. Simulate the following CPU scheduling algorithms
 - a) Round Robin b) SJF c) FCFS d) Priority
- 5. Implement a dynamic priority scheduling algorithm.
- 6. Assume that there are five jobs with different weights ranging from 1 to 5. Implement round

- robin algorithm with time slice equivalent to weight.
- 7. Implement priority scheduling algorithm. While executing, no process should wait for more than 10 seconds. If the waiting time is more than 10 seconds that process has to be executed for at least 1 second before waiting again.
- 8. Control the number of ports opened by the operating system with
 - a) Semaphore b) Monitors.
- 9. Simulate how parent and child processes use shared memory and address space.
- 10. Simulate sleeping barber problem.
- 11. Simulate dining philosopher's problem.
- 12. Simulate producer-consumer problem using threads.
- 13. Implement the following memory allocation methods for fixed partition
 - a) First fit b) Worst fit c) Best fit
- 14. Simulate the following page replacement algorithms
 - a) FIFO b) LRU c) LFU etc.,
- 15. Simulate Paging Technique of memory management
- 16. Simulate Bankers Algorithm for Dead Lock avoidance and prevention
- 17. Simulate the following file allocation strategies
 - a) Sequential b) Indexed c) Linked
- 18. Simulate all File Organization Techniques
 - a) Single level directory b) Two level c) Hierarchical d) DAG

References:

- "Operating System Concepts", Abraham Silberchatz, Peter B. Galvin, Greg Gagne, Eighth Edition, John Wiley.
- "Operating Systems: Internals and Design Principles", Stallings, Sixth Edition
 –2009,
 Pearson Education
- 3. "Modern Operating Systems", Andrew S Tanenbaum, Second Edition, PHI.
- 4. "Operating Systems", S.Haldar, A.A.Aravind, Pearson Education.
- 5. "Principles of Operating Systems", B.L. Stuart, Cengage learning, India Edition. 2013-2014
- 6. "Operating Systems", A.S.Godbole, Second Edition, TMH.

7. "An Introduction to Operating Systems", P.C.P. Bhatt, PHI.

Online Learning Resources/Virtual Labs:

https://www.cse.iitb.ac.in/~mythili/os/

http://peterindia.net/OperatingSystems.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 0 0 3 1.5

(20A38401P) VISUAL DESIGN & COMMUNICATION LAB

Course Objectives:

- To learn fundamental techniques (drawing, painting, working in volume).
- To discover the basic techniques of graphic designing and visual communication and their implementation.
- To master the principles of narration through visuals and written words.
- To develop one's creative personality

Course Outcomes:

After completion of the course, students will be able to

- Create visual compositions using basic elements and apply appropriate principles of visual composition to communicate ideas.
- Develop the ability to perceive, visualize and communicate visual elements as visual narratives.
- Apply the visual dynamics of visual language in Typography, Photography and Videography.
- Develop the ability to address simple communication problems through a visualization process and construct mental imageries

List of Experiments:

- 1. Exploring various elements of visual language such as Dot, Line, Form, Space, Texture & Pattern, and Colour.
- 2. Exploring the principles of the visual language using various elements and understanding their relationships: Movement with Dots, Rhythm with Lines, Balance with Letter Forms, Emphasis with Natural Forms, Proportion with Letter Forms, Order with Pattern, Symmetry & Asymmetry with Geometric Forms, Contrast with Abstract Forms, Harmony with Colours, etc.
- 3. Typography for print and digital media: Poster Design, Brochure Design, Infographics Design, Website Design, Application Design, Wayfinding
- 4. Introduction and Orientation: Art and Science of Photography.
 - o Drawing out parallels / differences between the EYE and the CAMERA.
 - Understanding the various controls on a Digital SLR Camera Features and Details,
 Shooting Modes, Aperture and Depth of Field, Critical Shutter Speeds and Effects
 - Exposure: Exposure as function of Quantity of Light and Time. Getting used to shooting in Manual Mode and learning to measure light using the camera's built-in exposure meter.
 - Film Speed/Sensor Sensitivity: Understanding the role of sensitivity in Exposure. ISO/ASA and Digital Noise.
 - Lenses: Different Types of Lenses. Classification of Lenses by Focal Lengths. Angle of View. Fixed Focal Length and Zoom Lenses. Close up and Macro Lenses.

- Light and Color Temperature: Understanding the nature and directions of light, their applications. Introduction to Color Temperature and White Balance. Images capturing light and shade.
- Exploring Individual Camera Controls: Images exploring Aperture, Shutter Speed and Focal Length.
- Composition: Elements of Composition and their relationship to the frame. Exploring composition through exercises built around the elements but coupled with an understanding / application of light / camera controls.
- Digital Post-Production: Introduction to File-Formats. RAW vs.JPG. Understanding resolution, resizing and basic image post processing using Photoshop. Exploring the software to visualize and create digital mosaics.
- Review and critique: Individual Critique after every assignment and a final critique on Portfolio submission (10 images).
- 5. Identifying Theme/Subject/Topic/Story/Pont of View & Research.
 - o Planning the Shots.
 - Selecting final shots and photo editing.
 - o Layout for a double spread magazine.
- 6. Concept development, Storyboarding, Video Shooting Framing, Camera movement etc, Video Editing
- 7. Defining communication
 - o Sender, Channel and Receiver
 - Semiotics Study of sign process (semiosis), meaning-making and meaningful communication.
 - o Sign, Signifier, Signified
 - Denotation and Connotation
 - o Communicating through visual messages
 - o Introduction to Gestalt laws of perception
 - o Understanding figure and ground phenomenon

Softwares - Adobe Indesign, Adobe Ilustrator Adobe Photoshop Open Source - Inkscape, Svg-Edit, Gimp, Paint.net, Pixlr, Scribus

References:

1. Wallschlaeger, Charles, &Busic-Synder, Cynthia, Basic Visual Concepts and Principles for Artists, Architects and Designers, McGraw-Hill, (1992).

- 2. Buxton, Bill, Sketching User Experience: Getting the Design Right and the Right Design (Interactive Technologies), Morgan Kaufmann, (2007).
- 3. Caplin, Steve; Banks, Adam, The Complete Guide to Digital Illustration, Publisher: Watson Guptill Publications, (2003).
- 4. Demers, Owen, Digital Texturing & Painting, Publisher: New Riders Press; Bk&CD-RomEdition, (2001).
- 5. Cairo, Alberto, The Functional Art. New Riders. (2013).
- 6. Pogany, Willy, The Art of Drawing, Publisher: Madison Books, (1996).

Online Learning Resources/Virtual Labs:

https://nptel.ac.in/courses/124107002

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 1 0 2 2

(20A05404) EXPLORATORY DATA ANALYTICS WITH R

Course Objectives:

The students will be able to learn:

- How to manipulate data within R and to create simple graphs and charts used in introductory statistics.
- The given data using different distribution functions in R.
- The hypothesis testing and calculate confidence intervals; perform linear regression models for data analysis.
- The relevance and importance of the theory in solving practical problems in the real world.

Course Outcomes:

After completion of the course, students will be able to

- Install and use R for simple programming tasks.
- Extend the functionality of R by using add-on packages
- Extract data from files and other sources and perform various data manipulation tasks on them
- Explore statistical functions in R.
- Use R Graphics and Tables to visualize results of various statistical operations on data.
- Apply the knowledge of R gained to data Analytics for real-life applications.

List of Experiments:

1: INTRODUCTION TO COMPUTING

- a. Installation of R
- b. The basics of R syntax, workspace
- c. Matrices and lists
- d. Subsetting
- e. System-defined functions; the help system
- f. Errors and warnings; coherence of the workspace

2: GETTING USED TO R: DESCRIBING DATA

- a. Viewing and manipulating Data
- b. Plotting data
- c. Reading the data from console, file (.csv) local disk and web
- d. Working with larger datasets

3: SHAPE OF DATA AND DESCRIBING RELATIONSHIPS

- a. Tables, charts and plots.
- b. Univariate data, measures of central tendency, frequency distributions, variation, and Shape.
- c. Multivariate data, relationships between a categorical and a continuous variable,
- d. Relationship between two continuous variables covariance, correlation coefficients, comparing multiple correlations.

e. Visualization methods – categorical and continuous variables, two categorical variables, two continuous variables.

4: PROBABILITY DISTRIBUTIONS

- a. Sampling from distribution Binomial distribution, normal distribution
- b. tTest, zTest, Chi Square test
- c. Density functions
- d. Data Visualization using ggplot Box plot, histograms, scatter plotter, line chart, bar chart, heat maps
- **5: EXPLORATORY DATA ANALYSIS** Demonstrate the range, summary, mean, variance, median, standard deviation, histogram, box plot, scatter plot using population dataset.

6: TESTING HYPOTHESES

- a. Null hypothesis significance testing
- b. Testing the mean of one sample
- c. Testing two means

7: PREDICTING CONTINUOUS VARIABLES

- a. Linear models
- b. Simple linear regression
- c. Multiple regression
- d. Bias-variance trade-off cross-validation

8: CORRELATION

- a. How to calculate the correlation between two variables.
- b. How to make scatter plots.
- c. Use the scatter plot to investigate the relationship between two variables

9: TESTS OF HYPOTHESES

- a. Perform tests of hypotheses about the mean when the variance is known.
- b. Compute the p-value.
- c. Explore the connection between the critical region, the test statistic, and the p-value
- **10**: **ESTIMATING A LINEAR RELATIONSHIP** Demonstration on a Statistical Model for a Linear Relationship
- a. Least Squares Estimates
- b. The R Function lm

c. Scrutinizing the Residuals

11: APPLY-TYPE FUNCTIONS

- a. Defining user defined classes and operations, Models and methods in R
- b. Customizing the user's environment
- c. Conditional statements
- d. Loops and iterations

12: STATISTICAL FUNCTIONS IN R

- a. Write Demonstrate Statistical functions in R
- b. Statistical inference, contingency tables, chi-square goodness of fit, regression, generalized linear models, advanced modeling methods.

References:

- 1. SandipRakshit, "Statistics with R Programming", McGraw Hill Education, 2018.
- 2. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, "AN Introduction to Statistical Learning: with Applications in R", Springer Texts in Statistics, 2017.
- 3. Joseph Schmuller, "Statistical Analysis with R for Dummies", Wiley, 2017.
- 4. K G Srinivasa, G M Siddesh, ChetanShetty, Sowmya B J, "Statistical Programming in R", Oxford Higher Education, 2017.

Online Learning Resources/Virtual Labs:

- 1. www.oikostat.ch
- 2. https://learningstatisticswithr.com/
- 3. https://www.coursera.org/learn/probability-intro#syllabus
- 4. https://www.isibang.ac.in/~athreya/psweur/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– II-II Sem L T P C 2 0 0 0

(20A99401) DESIGN THINKING FOR INNOVATION

Course Objectives:

The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

Course Outcomes (CO):

- Define the concepts related to design thinking.
- Explain the fundamentals of Design Thinking and innovation
- Apply the design thinking techniques for solving problems in various sectors.
- Analyse to work in a multidisciplinary environment
- Evaluate the value of creativity
- Formulate specific problem statements of real time issues

UNIT - I Introduction to Design Thinking

10 Hrs

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT - II Design Thinking Process

10 Hrs

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brain storming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT - III Innovation

8 Hrs

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT - IV Product Design

8 Hrs

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies.

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT - V Design Thinking in Business Processes

10 Hrs

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes.

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Textbooks:

- 1. Change by design, Tim Brown, Harper Bollins (2009)
- 2. Design Thinking for Strategic Innovation, Idris Mootee, 2013, John Wiley & Sons.

Reference Books:

- 1. Design Thinking in the Classroom by David Lee, Ulysses press
- 2. Design the Future, by Shrrutin N Shetty, Norton Press
- 3. Universal principles of design- William lidwell, kritinaholden, Jill butter.
- 4. The era of open innovation chesbrough.H

Online Learning Resources:

https://nptel.ac.in/courses/110/106/110106124/ https://nptel.ac.in/courses/109/104/109104109/ https://swayam.gov.in/nd1_noc19_mg60/preview

COMMUNITY SERVICE PROJECT

.....Experiential learning through community engagement

Introduction

- Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development
- Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.
- Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution.

Objective

Community Service Project should be an integral part of the curriculum, as an alternative to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

- To sensitize the students to the living conditions of the people who are around them,
- To help students to realize the stark realities of the society.
- To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability
- To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.
- To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.
- To help students to initiate developmental activities in the community in coordination with public and government authorities.
- To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

- Every student should put in a 6 weeksfor the Community Service Project during the summer vacation.
- Each class/section should be assigned with a mentor.
- Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like youth, women, house-wives, etc
- A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded.
- The logbook has to be countersigned by the concerned mentor/faculty incharge.
- Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.
- The final evaluation to be reflected in the grade memo of the student.
- The Community Service Project should be different from the regular programmes of NSS/NCC/Green Corps/Red Ribbon Club, etc.
- Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.
- Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

- A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.
- The Community Service Project is a twofold one
 - First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data.
 - Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like –
 - Agriculture
 - Health
 - Marketing and Cooperation
 - Animal Husbandry
 - Horticulture
 - Fisheries
 - Sericulture
 - Revenue and Survey
 - Natural Disaster Management
 - Irrigation
 - Law & Order
 - Excise and Prohibition
 - Mines and Geology
 - Energy
 - Internet
 - Free Electricity
 - Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

- Positive impact on students' academic learning
- Improves students' ability to apply what they have learned in "the real world"
- Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development
- Improved ability to understand complexity and ambiguity

Personal Outcomes

- Greater sense of personal efficacy, personal identity, spiritual growth, and moral development
- Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- Reduced stereotypes and greater inter-cultural understanding
- Improved social responsibility and citizenship skills
- Greater involvement in community service after graduation

Career Development

- Connections with professionals and community members for learning and career opportunities
- Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- Stronger relationships with faculty
- Greater satisfaction with college
- Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

- Satisfaction with the quality of student learning
- New avenues for research and publication via new relationships between faculty and community
- Providing networking opportunities with engaged faculty in other disciplines or institutions
- A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- Improved institutional commitment
- Improved student retention
- Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

- Satisfaction with student participation
- Valuable human resources needed to achieve community goals
- New energy, enthusiasm and perspectives applied to community work
- Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for Engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programmes
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programmes and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming

- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people
- 39. Utilisation of free electricity to farmers and related issues
- 40. Gender ration in schooling lvel- observation.

Complimenting the community service project the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programmesare; Programmes for School Children

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programmes for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Womens' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharath
- 7. AIDS awareness camp
- 8. Anti Plastic Awareness
- 9. Programmes on Environment
- 10. Health and Hygiene
- 11. Hand wash programmes
- 12. Commemoration and Celebration of important days

Programmes for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programmes

- 1. Awareness on RTI
- 2. Health intervention programmes
- 3. Yoga

- 4. Tree plantation
- 5. Programmes in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
 - xii. Excise and Prohibition
 - xiii. Mines and Geology
 - xiv. Energy

Role of Students:

- Students may not have the expertise to conduct all the programmes on their own. The students then can play a facilitator role.
- For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- As and when required the College faculty themselves act as Resource Persons.
- Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.
- And also with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

- A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.
- A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.
- The Governmental agencies, like revenue administration, corporation and municipal authorities and village secreteriats could be aligned for the survey.

2. Community Awareness Campaigns (One Week)

• Based on the survey and the specific requirements of the habitation, different awareness campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Three Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

• During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks work to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The

same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 3 0 0 3

(20A38501) AUTOMATA THEORY AND COMPILER DESIGN

Course Objectives:

• The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages

Course Outcomes:

After completion of the course, students will be able to

- Explain deterministic and non-deterministic machines.
- Comprehend the hierarchy of problems arising in the computer sciences.
- Design a deterministic finite-state machine to accept a specified language.
- Explain how a compiler can be constructed for a simple context free language.
- Determine a language's location in the Chomsky hierarchy (regular sets, context-free, context-sensitive, and recursively enumerable languages)

UNIT IFormal Language and Regular Expressions:

8 Hrs

Languages, Definition Languages regular expressions, Finite Automata – DFA, NFA. Conversion of regular expression to NFA, NFA to DFA. Applications of Finite Automata to lexical analysis, lex tools. Context Free grammars and parsing: Context free grammars, derivation, parse trees, ambiguity LL(K) grammars and LL(1) parsing

UNIT II Parsing and Semantics

9 Hrs

Bottom-up parsing handle pruning LR Grammar Parsing, LALR parsing, parsing ambiguous grammars, YACC programming specification.

Semantics: Syntax directed translation, S-attributed and L-attributed grammars, Intermediate code – abstract syntax tree, translation of simple statements and control flow statements.

UNIT III Context Sensitive Features and Run Time Storage

8 Hrs

Context Sensitive features – Chomsky hierarchy of languages and recognizers. Type checking, type conversions, equivalence of type expressions, overloading of functions and operations.

Run time storage: Storage organization, storage allocation strategies scope access to now local names, parameters, language facilities for dynamics storage allocation.

UNIT IV Code Optimization

9 Hrs

Code optimization: Principal sources of optimization, optimization of basic blocks, peephole optimization, flow graphs, Data flow analysis of flow graphs.

UNIT V Code Generation

9 Hrs

Code generation: Machine dependent code generation, object code forms, generic code generation algorithm, Register allocation and assignment. Using DAG representation of Block.

Textbooks:

- 1. John E. Hopcroft, Rajeev M & J D Ullman: "Introduction to Automata Theory Languages & Computation", 3rd Edition, Pearson Education, 2007.
- 2. Aho, Ullman, Ravisethi: "Compilers Principles, Techniques and Tools", 2nd Edition, Pearson Education, 2009

Reference Books:

- 1. Tremblay J P, Sorenson G P: "The Theory & Practice of Compiler writing", 1st Edition, BSP publication, 2010.
- 2. Appel W & Andrew G M: "Modern Compiler Implementation in C", 1st Edition, Cambridge University Press, 2003.
- 3. Louden: "Compiler Construction, Principles & Practice", 1st Edition, Thomson Press, 2006.
- 4. Sipser Michael: "Introduction to Theory of computation", 2nd Edition, Thomson

Online Learning Resources:

https://nptel.ac.in/courses/106104148

https://nptel.ac.in/courses/106105190

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 3 0 0 3

(20A38502T) MULTIMEDIA APPLICATION DEVELOPMENT

Course Objectives:

- Understand the hardware and software needed to create projects using creativity and organization to create them.
- To know working with all aspects of images, Sound, video.
- Learn copyright laws associated with multimedia.
- Learn the cost involved in multimedia planning, designing, and producing.

Course Outcomes:

- Students will understand multimedia in respect to many application including business, schools, home, education, and virtual reality.
- Develop multimedia skills understanding the principal players of individual players in multimedia teams in developing projects.
- Learn ways to present their multimedia projects.

UNIT I

Introduction: Various facets of multimedia- audio, text, graphics, animation, video

Classification of multimedia technology Multimedia - hardware/software essentials, different categories of multimedia software.

UNIT II

Working with Audio, Text and Graphics: Multimedia audio: Introduction, digital audio and sound card fundamentals, sound card functionalities, audio jacks, connectors, digital audio playback, audio editing, Multimedia text: introduction, designing text for multimedia, hypermedia, hypertext Multimedia graphics: introduction, basic concepts of colour displays,

monitor video modes, colour monitors and their parameters, graphics in multimedia projects

UNIT III

Working with Video and Animation: Multimedia video: introduction, video in multimedia projects, digital video fundamental, full motion and full screen videos, digital video files sizes, digital video production techniques — video production in multimedia, shooting the sequences, video capture techniques, video capture boards, video capture software, editing video, embedding sound clips

UNIT IV

Multimedia Animation: introduction, classifications, two- dimensional animation and three-dimensional animation technology, animation development process, names of animation software tools for 2D and 3D.

UNIT V

Multimedia Project:Multimedia project design concepts – introduction, concept and design, various facets, media content design and development, interface design and development process, Multimedia authoring: introduction, multimedia programming vs. multimedia authoring, selection between authoring and programming tool, authoring methodologies, characteristics of authoring tools.

Textbooks:

1. Introduction to Multimedia: By Ana Weston Solomon, Tata McGraw-Hill Publishing Company Limited, 2005

Reference Books:

1. Multimedia Magic. By S. Gokul, BPB Publications, 1998.

(20A38503T) DESIGN OF INTERACTIVE SYSTEMS

Course Objectives:

- To learn all the aspects of design and development of interactive systems, which are now an important part of our lives.
- To understand the range of requirements generation techniques.
- To understand different types of interaction, command languages and graphical user interfaces (GUIs).
- Understand the main characteristics of people that are relevant to designing interactive systems

Course Outcomes:

After completion of the course, students will be able to

- Understand the innovative features of interactive system and be able to improve existing interfaces by considering these features.
- Explain the foundation of designing interactive systems
- Design Interaction design approaches in different contexts, e.g., web, social media, multimedia applications.

- Use techniques for understanding people and their activities in context.
- To evaluate mobile systems, applications and services.

UNIT I Essentials of designing interactive systems

Lecture 9 Hrs

Designing interactive systems: a fusion of skills, PACT: a framework for designing interactive systems, The process of human-centered interactive systems design, Usability, Experience Design, The Home Information Centre (HIC): a case study in designing interactive systems

Techniques for designing interactive systems UNIT II

Lecture 8Hrs

Understanding, Envisionment, Design, Evaluation, Task analysis, Visual interface design, Multimodal interface design.

UNIT III **Contexts for designing interactive systems** Lecture 8 Hrs

Designing websites: Website Development, The Information Architecture of Websites, Navigation Design for Websites.

Social Media: Background Ideas, Social Networking, The Developing Web.

Collaborative Environments: Issues for Cooperative Working, Technologies to Support

Cooperative Working, Collaborative Virtual Environments,

Agents and avatars: Agents, Adaptive Systems, An Architecture for Agents, Application of Agent-

based Interaction, Avatars and Conversational Agents.

UNIT IV Contexts for designing interactive systems

Lecture 9 Hrs

Ubiquitous computing: Information Spaces, Blended Spaces, Home Environments, Navigating in Wireless Sensor Networks

Mobile Computing: Context Awareness, Understanding in Mobile Computing, Designing for

Mobiles, Evaluation for Mobile Computing

Wearable computing: Introduction, Smart Materials, Material Design, From Materials to Implants.

UNIT V Foundations of designing interactive systems

Lecture 9 Hrs

Memory, Attention and Human Error, Psychological Theories of Emotion, Detecting and Recognizing Emotions, Expressing Emotion, Human Information Processing, Situated Action, Distributed Cognition, Embodied Cognition, Activity Theory, Human Communication, People in Groups, Presence, Culture and Identity, Visual and Non-visual Perception, Navigation.

Textbooks:

1. Designing Interactive Systems: A Comprehensive Guide to HCI, UX & Interaction Design, 3rd ed by David Benyon

Reference Books:

1. Interactive System Design by Michael Lamming and William Newman

2. The Human Interface: New Directions for Designing Interactive Systems by JefRaskin

Online Learning Resources:

 $\underline{http://www.dcs.gla.ac.uk/\sim johnson/teaching/isd/course.html}$

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 3 0 0 3

(20A38504a) AESTHETICS AND ART (PROFESSIONAL ELECTIVE COURSE- I)

Course Objectives:

- To introduce the students to some of the basic issues pertaining to art through exposure to different art-media and art-works.
- To learn the major philosophical theories of art and aesthetics offered during specific historical periods.
- To engage students in the study of classical, modern, and contemporary philosophical responses to questions and problems of aesthetic experience and perception, the nature of art and art works, objective vs. subjective value of art, theories of beauty and the sublime, and soon.
- To expose the ways in which art affects life on a personal, cultural, social, and global level.

Course Outcomes:

After completion of the course, students will be able to

- Recognize the subjects and objects in the field of art.
- Explain the evolution of aesthetics throughout history and contemporary aesthetics.
- Define the difference between/among various knowledge garnered from philosophy, science, and art.
- Identify how the arts contribute to a robust, adaptive, and prosperous society.
- Develop a response to a creative work that is aesthetic in nature.

UNIT I Art and the Creative Process

Lecture 8Hrs

Art as Semblance: The meaning of Art, Illusion in Play and Art, Beauty and Illusion, Nature's imitation of Art.

Art as Beauty: Beauty and Imitation, The Nature of Beauty.

Art as Emotional Expression: Art as the Expression of Emotion, The Communication of Emotion, Art the Reliever.

UNIT II Art and the Creative Process

Lecture 9Hrs

Art as Intuition: The Individual and the Type, Intuition and Expression, The Gap Between Intuition and Expression.

Art as Wish-Fulfilment: The Will to Power in Art, Wish-Fulfilment and the Unconscious, Psychology and Literature, Poetry's Dream-Work.

Art as Vivid Experience: Having an Experience, The Habit of Art

Can Art be defined?: Games and Definitions, The Role of Theory in Aesthetics

UNIT III The Work of Art

Lecture 9Hrs

The Body of The Work: The work of Art as Physical, The Esthetic Attitude in Its Embodiments, Sensuous Elements and Esthetic Orders.

Expressiveness: Science, Art, and Technology, Expressiveness and Symbolism, Expression, Science and Poetry, The Nature of Music

UNIT IV The Work of Art

Lecture 8Hrs

Form: Pure and Impure Art, Poetry for Poetry's Sake, The Problem of Esthetic Form, Type Designs, Style

Form and Function: Structure and Organization, The Esthetic Assimilation of the Machine

UNIT V Appreciation and Criticism

Lecture 8Hrs

Empathy and Abstraction: Empathy, Inner Imitation, and Sense-Feelings, Abstraction and Empathy.

Isolation and Synaesthesis: Connection in Science and Isolation in Art, Synaesthesis

Criticism: Of the Standard of Taste, The Nature and Criteria of Criticism, Organistic Criticism, Greatness

Textbooks:

- 1. M. Rader (ed.), A Modern Book of Aesthetics: an anthology, Holt, Rinehart and Winston, 1973.
- 2. Aesthetics: A Comprehensive Anthology. Eds. Steven M. Cahn & Aaron Meskin. Malden(MA): Blackwell Publishing, 2008. ISBN 9781405154352.2.
- 3. Barrett, Terry. Why Is That Art?: Aesthetics and Criticism of Contemporary Art . Oxford:Oxford University Press, 2012, 2008. ISBN 978-0-19-975880-

Reference Books:

- 1. Aesthetics: The Big Questions, edited by Carolyn Korsmeyer. (K)
- 2. The Philosophy of Art: A Contemporary Introduction, Noël Carroll. (C)
- 3. J. Hospers (ed.), Introductory Readings in Aesthetics, Free Press, 1969.
- 4. R.B. Patankar, Aesthetics and Literary Criticism, Nachiketa Publications, 1969.
- 5. V. Raghavan, and Nagendra (eds.), An Introduction to Indian Poetics, Macmillan 1970.
- 6. H. Osborne, Aesthetics and Art Theory: an historical introduction, Dutton, 1970.

Online Learning Resources:

https://www.hss.iitb.ac.in/en/hs-463-introduction-to-art-and-aesthetics

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 3 0 0 3

(20A38504b) COMPUTER GAME DESIGN AND PROGRAMMING (Professional Elective Course– I)

Course Objectives:

- To introduce the fundamentals of game development & design using the Unreal 4 game engine.
- To implement custom game logic using the Blueprints Visual Scripting system.

Course Outcomes:

After completion of the course, students will be able to

- Utilize and implement general game design theory and techniques.
- Design and utilize custom Blueprints scripts.
- Design specific game elements based on topics learned in class
- Master basic game development (produce, test and present a beta version of a game of your own design)
- Create an architectural visualization, a shooting gallery mini-game and a basic first person shooter.

UNIT I Lecture 8Hrs

Level Design I – (**Architectural Visualization**): Intro to the UE4 Editor, Adding Static Meshes & Materials, Creating and Detailing an Interior Room, Lighting Techniques, Post Processing Effects, Camera Sequencing, Particle Effects.

UNIT II Lecture 9Hrs

Level Design II – (Adding Interactivity): Introduction to Blueprints, Adding Physics to Static Meshes, Triggering Events (Lighting, Effects, Text), Create a Key Pickup and HUD, Animating and Opening a Door in Blueprints.

UNIT III Lecture 8Hrs

Shooting Gallery Mini-Game: Intro to the Material Editor, Adding Motion to Objects, Spawning and Destroying Objects, Create a Destructible Mesh to Shatter Objects, Design a Simple User Interface, Creating a Win Condition

UNIT IV Lecture 8Hrs

First Person Shooter: Audio and Particle Effects (Explosions), Character Enhancements (Sprint, Rifle Zoom, Rate of Fire), Game Objectives and Constraints, Collectible Objects & Win Condition, User Interface Design, Material Design, AI

UNIT V Lecture 9 Hrs

Side-Scroller: Animation Assets, Animation Notifications, Audio, Character Animation & Blend

Spaces, State Machines, Ragdoll Effect, Finalizing & Packaging Games.

Textbooks:

- 1. Carnall, Benjamin. *Unreal Engine 4.X by Example*. Birmingham, UK: PacktPublishing, 2016.
- 2. Sewell, Brenden. *Blueprints Visual Scripting for Unreal Engine*. Birmingham, UK: Packt Publishing, 2015.
- 3. Doran, John. *Unreal Engine Game Development Cookbook*. Birmingham, UK: Packt Publishing, 2015.

Reference Books:

- 1. Schell, Jesse. The Art of Game Design: A Book of Lenses. Boca Raton, USA: CRC Press, 2008.
- 2. Game Design Workshop: A Playcentric Approach to Creating Innovative Games, Third Edition, 2014, Tracy Fullerton

Online Learning Resources:

https://www.coursera.org/specializations/game-design

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 3 0 0 3

(20A38504c) FILM MAKING AND RADIO PODCASTING (Professional Elective Course– I)

Course Objectives:

- To introduce the students to the fundamentals of film production.
- To introduce students the human resource requirements and their responsibilities in film making.
- To understand the basics of various camera, lenses, lighting and digital cinematography.

Course Outcomes

After completion of the course, students will be able to

- Understand Audio File Formats and Codecs
- Arrange Sound Tracks, Edit Vocals and Create Podcast
- Understand Film Shooting and Editing Concepts
- Sequence or Edit Video shots in a scene
- Shoot, capture and output short video projects

UNIT I The Team and Scriptwriting

Lecture 8Hrs

The Team: Overview of the Crew, Departments and Job Descriptions, Collaborating and working as a team, Introduction to stages of film production.

Scriptwriting: Treatments, Screenplay-format and layout, Narrative structures, Protagonists and antagonists, Adoption, Genre, Loglines, Story boards.

UNIT II Directing and Cinematography

Lecture 9Hrs

Shot sizes- meaning and motivation, Camera movements- methods and meaning, Master shots, cutaways, inserts, reaction shots, Parallel action, Shooting scripts. Picture composition and framing, working with lighting, color, lenses.

UNIT III Sound and Post-Production

Lecture 8Hrs

Audio field production, microphones, Post-production sound, Music, Sound effects, Editing, Continuity, Continuous Shot, Shooting with knowledge of editing. Researching, Mini interviews, Essential resources.

UNIT IV Broadcasting Systems

Lecture 8Hrs

Public vs Private broadcasting systems in India; Radio Broadcasting Systems--MW, SW, FM; Internet Radio, Podcasting: Satellite Radio, Community Radio.

UNIT V Scriptwriting

Lecture 9 Hrs

Scriptwriting for different formats of Radio, Elements of Radio scripts; Listing, scheduling and traffic management; Importance of Audience Surveys. Types and formats of Radio programmes--News, Music, Interviews, Talks, Dramas, Discussions, Off-tube commentary, Features, Documentaries, Jingles, Phone-ins, Roadshows, Radio bridges, Spots, Sponsored programmes, Sponsorship and Infocommercials.

Textbooks:

- 1. Jane Barnwell, The Fundamentals of Film Making, AVA book publishing, SA, 2019
- 2. Nicholas Proferes, Film Directing Fundamentals: See Your Film Before Shooting, Focal press, 2012
- 3. A. Goswami, Thin Film Fundamentals, New age international publishers, 1996
- 4. Mass Communication and Journalism in India: D.S. Mehta, Allied Publishers Limited
- 5. Mass Communication In India: Keval J. Kumar, Jaico Publishing House, Mumbai
- 6. Understanding Mass Communications: Defleur / Dennis, Goyalsaab Publishers, New Delhi

Reference Books:

- 1. Michael K. Hughes, Digital Filmmaking for Beginners A Practical Guide to Video Production, McGrawHill, 2012.
- 2. The Filmmakers Handbook By Stevenascher 2. Shot By Shot By Steven Katz.
- 3. Broadcasting in India: P.C. Chattergee, Sage Publication, New Delhi
- 4. Broadcast Journalism: Boyd Andrew, Focal Press, London
- 5. News Writing for Radio and T.V: K.M. Shrivastava, Sterling Publication New Delhi
- 6. This is All India Radio: P.C. Chattergee, Publication Division, New Delhi
- 7. News Writing: George A. Hough, Kanishka Publication, New Delhi

Online Learning Resources:

https://www.filmdaily.tv/film-school/online-film-courses

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 0 0 3 1.5

(20A38502P) MULTIMEDIA APPLICATION DEVELOPMENT LAB

Course Objectives:

- Describe different realizations of multimedia tools and the way in which they are used.
- Compare various data compression schemes.
- Analyze user interface for a given application

Course Outcomes:

- Demonstrate editing and integration of graphic images, animation, video and audio files
- Design a short films and teaching material for better understanding.
- Apply different multimedia development tools to produce web based and stand-alone user interfaces.

List of Experiments:

Basic Multimedia programs using PHOTOSHOP

- 01. Write a program to visualize a given image in different forms using features like brightness, contrast, blur etc.
- 02. Write a program to design a visiting card containing at least one Graphic and Text information.
- 03. Write a program to prepare a cover page for any book in your subject area.
- 04. Write a program to use appropriate tools from the tool box to cut the objects from three

files (F1.jpg, F2.jpg, F3.jpg); Organize them in a single file and apply feather effects.

Multimedia Programs developed using FLASH

- 05. Write a Program to perform motion tweening operation using flash
- 06. Write a Program to create a 24 spokes on a wheel using flash.
- 07. Write a Program to change and object shape using a shape tweening concept.
- 08. Write a program to create an animated e-card using adobe Flash.
- 09. Write a Program to create an animation to represent the Growing Moon.
- 10. Write a Program to create an animation to indicate a ball bouncing on Steps.
- 11. Write a Program to simulate a ball hitting another ball.
- 12. Write a Program to change a circle into a square using Flash.

Rich Internet Applications (RIA) using Adobe Flex and Ajax

- 13. Write an MXML code to display HelloWorld using Flex.
- 14. Create a Flex Project using Flash Builder IDE to run HelloWorld Application.
- 15. Implement an AJAX program to fetch RSS feeds from a well-known RSS feed site.

Provide a scrolling display of latest news on your page. You can use xparser.js if you like.

- 16. Implement an RSS-based search feature. Have a text box and a button in your page for the same. Show the results in a separate <div> which has the results as hyperlinks, which the user can click.
- 17. Use the Reverse AJAX technique to build a web-based chat application. The application is one-way browser-based. That is, we have a window in which one user types his messages. From other other side, the second user directly updates a file on the server (instead of a browser area).
- 18. A file on a server has information about cricket players. The fields represent name, country, matches, runs and centuries. The fields are separated by colons (:). The front end screen has a text field in which the user can enter a country. The server returns details of all players belonging to that country in the form of one big JSON object. The client parses the JSON object and builds an HTML table to print the results. Implement the server side script and the client code.
- 19. Write an Ajax enabled address book web application that interacts with a webservice to obtain data and to modify data in a server-side database.
- 20. Write a Calender web application built using Dojo toolkit.

References:

- 1. Professional Adobe Flex 3, Joseph Balderson, Peter Ent, et al, WroxPublications, Wiley India, 2009.
- 2. Multimedia Communications: Applications, Networks, Protocols and Standards, FredHalsall, Pearson Education, 2001, RP 2005.
- 3. Multimedia making it work, Tay Vaughan, 7th edition, TMH, 2008.
- 4. Introduction to multimedia communications and Applications, Middleware, Networks, K. R. Rao, Zoran, Dragored, Wiley India, 2006, RP. 2009.
- 5. Multimedia Computing, Communications & Applications, Ralf Steinmetz and KlaraNahrstedt,

Pearson Education, 2004

- 6. Principles of Multimedia, Ranjan Parekh, TMH, 2006.
- 7. Multimedia in Action, James E. Shuman, Cengage Learning, 198, RP 2008.
- 8. Multimedia Systems design, Prabhat K. Andleigh, KiranThakrar, PHI, 1986.
- 9. Multimedia and Communications Technology, Steve Heath, Elsevier, 1999, RP 2003.
- 10. Adobe Flash CS3 Professional, Adobe press, Pearson Education, 2007.
- 11. Flash CS3 Professional Advanced, Russel Chun, Pearson Education, 2007.
- 12. Flash CS5, Chris Grover, O'Reilly, SPD, 2010.
- 13. SAMS Teach yourself Adobe flash CS3, Pearson Education, 2007.
- 14. Flex 4 Cookbook, Joshua Noble, et. al, O'Reilly, SPD 2010.
- 15. Flex3 A beginner's guide, Michele E. Davis, Jon A. Phillips, TMH, 2008.
- 16. Mastering Dojo, R. Gill, C. Riecke and A. Russell, SPD, 2008.

Online Learning Resources/Virtual Labs:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 0 0 3 1.5

(20A38503P) DESIGN OF INTERACTIVE SYSTEMS LAB

Course Objectives:

- To understand Importance of Good Design
- To understand Advantages of Graphical Interface

Course Outcomes:

After completion of the course, students will be able to

- 1. Choose a proper screen based control.
- 2. Develop system menus and navigation schemes.
- 3. Develop end-user interfaces incorporating problem solving solutions in HCI.
- 4. Apply Information Systems tools to prototype the end-user design.
- 5. Effectively design items within toolbar / menus/ control panel as per the context and use.
- 6. Compare different keypad designs based on the results obtained and graphs.
- 7. Verify the effects of inconsistencies in interface which cause increase in errors and time taken to perform a task.

List of Experiments:

- 1) Design an user interface for the following:
 - i) Assigning a grade to students based on the subjects marks.
 - ii) For registration of a student for admissions,
- 2) Design an user interface for the following:
 - i) to check whether the year is leap year or not
 - ii) for simple sort program
- 3) Design a prototype of a TV Remote Control using the standard buttons provided.
- 4) Effect of different font types and sizes on readability.
- 5) Design user interface screens for an online shopping website. You are required to design interaction screens that should clearly indicate usage of the good design principles.
- 6) Considering online shopping user interface screens as a sample, design Visually appealing interface by using i) meaningful contrast between screen elements, ii) Grouping and Aligning screen elements, and iii) Using colors and graphics effectively.
- 7) Design user interface by selecting the best and appropriate screens elements (e.g. Textboxes, combo box, icons, labels etc.) suitable for online shopping website. Present these elements on the screen to increase the usability, clarity, predictability of your interface.
- 8) Design user interface by choosing proper background and foreground color that is suitable for your application. Also appropriate color should be selected for highlighting selection. You are required to design TWO interaction screens, one without using colors and one with the use of appropriate colors. The second version should clearly indicate its advantages over the first version.
- 9) Design menu and navigational scheme for your project. You are required to submit two versions of menu and navigational scheme design. One without using principles of menu design and another by following menu design guidelines

- 10) Provide proper feedback, documentation and assistance for your project. You are required to submit two versions of the system. One without using principles of UI design and another by following principles and guidelines of UI design.
- 11) **Usability Measurement Tool for E-Learning (UMTEL)**: This online measurement tool consists of six simple checklists that could be used by a novice evaluator to evaluate usability level of an e-learning. (https://hci-iitg.vlabs.ac.in/)
- 12) Apply Fitt's Law in designing and placing widgets on computer interface. (https://hci-iitg.vlabs.ac.in/)

References:

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, Human Computer Interaction, Third Edition, Pearson Education, 2004.
- 2. Brian Fling, Mobile Design and Development, First Edition, O'Reilly Media, 2009
- 3. Bill Scott and Theresa Neil, Designing Web Interfaces, First Edition, O'Reilly, 2009.
- 4. 3D User Interfaces: Theory and Practice (2nd Edition) (*Usability*) by Joseph J. LaViola Jr., Ernst Kruijff, Ryan P. McMahan, Doug Bowman, Ivan P. Poupyrev.
- 5. Interaction Design: Beyond Human-Computer Interaction (4th Edition) by Jenny Preece, Helen Sharp, Yvonne Rogers (Wiley). Article Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. *Psychology of learning and motivation: II*, 249.
- 6. Designing the User Interface, 3rd Ed By Ben Shneiderman
- 7. Hiroshi Ishii, Minoru Kobayashi, KazuhoArita. Iterative design of seamless collaboration media. Communications of the ACM, August 1994/Vol. 37, No.8.
- 8. Jakob Nielsen. "Card Sorting to Discover the Users' Model of the Information Space". Useit. 1995.[online] http://www.useit.com/papers/sun/cardsort.html [Accessed on 10 Oct 2011].
- 9. Minimalistic and intuitive interface design guidelines for consumer electronics devices http://www.jot.fm/issues/issue 2007 03/column5.pdf
- 10. http://www.yuiblog.com/blog/2007/10/02/challenges-of-interface-design-for-mobile-devices/
- 11. http://www.usabilityfirst.com/usability-methods/hci-design-approaches/

Online Learning Resources/Virtual Labs:

https://hci-iitg.vlabs.ac.in/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-I Sem L T P C 1 0 2 2

(20A38505) DJANGO WEB FRAMEWORK

(SKILL ORIENTED COURSE-III)

Course Objectives:

The students will be able to learn:

- Django fundamentals and use its concepts to build and deploy robust web applications and apps.
- Django URL patterns and views and deploy Django applications.

Course Outcomes:

After completion of the course, students will be able to:

- Build robust and scalable web applications from scratch using Python and Django.
- Build RESTful APIs with the Django REST framework to connect apps with the world.
- Perform critical tasks of a junior back-end web developer, including building new web applications, as well as reading and improving an existing code base.
- Identify and fix common issues with Django apps.

List of Experiments:

Module 1: Introduction to Django

Django Overview, Django Installation, Crating a Project, Creating an Application, Understanding Folder Structure, Creating a Hello World Page.

Hands-on: Installation and Basic Hello World in Django Web Page

Module 2: How to Create Django Views

About View Functions, Using Django's HttpResponse Class, Understanding HttpRequest Objects, Using QueryDict Objects.

Hands-On/Demo: Create a simple View using Django

Module 3: Configuring URLconf's

About URLconf, Regular Expressions, Expression Examples, Simple URLConf Examples, Using Multiple URLConf's, Passing URL Arguments

.

B.Tech. R20 Regulations

Module 4: Django Templates and Forms

Template Fundamentals, Creating Template Objects, Loading Template Files, Filling in Template Content (Context Objects), Template Tags, Template Filters, More on For Loops, Template Inheritance, Easy Rendering of Templates, Request Context Processors, Global Context Processors, Form classes, Validation, Authentication, Advanced Forms processing techniques.

Hands-On/Demo: Create a Form that accepts personal data from a user, Creating Contact Us form

Module 5: Django and REST APIs

Django REST framework, Django-piston, REST APIs

Hands-On/Demo: Creating a REST API

Module 6: Unit Testing with Django

Using Python's unittest2 library, Test, Test Databases, Doctests, Debugging.

Module 7: Models and Dynamic Webpages

Django Models, Model Fields, Model Inheritance, CRUD on DB, Primary keys and the Model, Dynamic Webpages, Toggle Hidden Content, jQuery and AJAX integration.

Hands-On/Demo: Adding a Like button to a webpage

Module 8: Using Django Admin Interface

Enabling the Admin Interface, Creating an Admin User.

Module 9: Access Control with Sessions and Users

Cookies & Django, The Django Session Framework, Sessions in Views, Session Tuning, Installing Django User Authentication, Using Authentication in Views, Login and Logout, Building your Own Login/Logout Views, Authentication Decorators, Adding & Deactivating Users, Asynchronous Messaging, Managing Permissions.

Module 10: Generic Views

Simple Generic Views, Using Generic Redirects, Other Generic Views, Create/Update/Delete Generic views.

Module 11: Django's Email Functionality

Configuring Mail Settings, Sending Email, Other Email Functions.

Module 12: Deploying Django Applications

Deploying Django Applications

Hands-on: Creating a Real Estate Application with Client and Server, Like a Magic Bricks where people can post their Property and Viewers can view and contact.

References:

- 1. William S Vincent, Django for APIs: Build web APIs with Python and Django, 2020
- 2. William S Vincent, Django for Beginners: Build websites with Python and Django.

Online Learning Resources/Virtual Labs:

- 1. https://www.zeolearn.com/django-training
- 2. https://www.edureka.co/python-django
- 3. https://www.besanttechnologies.com/python-django-training

B.Tech. **R20 Regulations**

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech- (CSD) – II Sem L T P C

3 0 0 0

20A99201 ENVIRONMENTAL SCIENCE

(Common to All Branches of Engineering)

Course Objectives:

- To make the students to get awareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

Course Outcomes (CO):

At the end of the course, the student will be able to

- Grasp multidisciplinary nature of environmental studies and various renewable and nonrenewable resources.
- Understand flow and bio-geo- chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste land reclamation.
- Casus of population explosion, value education and welfare programmes.

UNIT - I

Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources — Natural resources and associated problems — Forest resources — Use and over — exploitation, deforestation, case studies — Timber extraction — Mining, dams and other effects on forest and tribal people — Water resources — Use and over utilization of surface and ground water — Floods, drought, conflicts over water, dams — benefits and problems — Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies — Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. — Energy resources:

UNIT - II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity And Its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT - III 8 Hrs

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution

- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT - IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act. – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT - V

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

- 1. Text book of Environmental Studies for Undergraduate Courses ErachBharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.AzeemUnnisa, "Environmental Studies" Academic Publishing Company
- 4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

Reference Books:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice hall of India Private limited.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 3 0 0 3

(20A05602T) MACHINE LEARNING

Course Objectives:

The course is introduced for students to

- Gain knowledge about basic concepts of Machine Learning
- Study different learning algorithms
- Learn about of evaluation of learning algorithms
- Learn about Dimensionality reduction

Course Outcomes:

inductive bias.

After completion of the course, students will be able to

- Identify machine learning techniques suitable for a given problem
- Solve the problems using various machine learning techniques
- Apply Dimensionality reduction techniques
- Design application using machine learning techniques

UNIT I Lecture 8Hrs

Introduction: Definition of learning systems, Goals and applications of machine learning, Aspects of developing a learning system: training data, concept representation, function approximation. Inductive Classification: The concept learning task, Concept learning as search through a hypothesis space, General-to-specific ordering of hypotheses, Finding maximally specific hypotheses, Version spaces and the candidate elimination algorithm, Learning conjunctive concepts, The importance of

UNIT II Lecture 8Hrs

Decision Tree Learning: Representing concepts as decision trees, Recursive induction of decision trees, Picking the best splitting attribute: entropy and information gain, searching for simple trees and computational complexity, Occam's razor, Overfitting, noisy data, and pruning.

Experimental Evaluation of Learning Algorithms: Measuring the accuracy of learned hypotheses. Comparing learning algorithms: cross-validation, learning curves, and statistical hypothesis testing.

UNIT III Lecture 9Hrs

Computational Learning Theory: Models of learnability: learning in the limit; probably approximately correct (PAC) learning. Sample complexity for infinite hypothesis spaces, Vapnik-Chervonenkis dimension.

Rule Learning: Propositional and First-Order, Translating decision trees into rules, Heuristic rule induction using separate and conquer and information gain, First-order Horn-clause induction (Inductive Logic Programming) and Foil, Learning recursive rules, Inverse resolution, Golem, and Progol.

UNIT IV

Lecture 9Hrs

Artificial Neural Networks: Neurons and biological motivation, Linear threshold units. Perceptrons: representational limitation and gradient descent training, Multilayer networks and backpropagation, Hidden layers and constructing intermediate, distributed representations. Overfitting, learning network structure, recurrent networks.

Support Vector Machines: Maximum margin linear separators. Quadratic programming solution to finding maximum margin separators. Kernels for learning non-linear functions.

Lecture 9Hrs

UNIT V

Bayesian Learning: Probability theory and Bayes rule. Naive Bayes learning algorithm. Parameter smoothing. Generative vs. discriminative training. Logistic regression. Bayes nets and Markov nets for representing dependencies.

Instance-Based Learning: Constructing explicit generalizations versus comparing to past specific examples. k-Nearest-neighbor algorithm. Case-based learning.

Textbooks:

- 1) T.M. Mitchell, "Machine Learning", McGraw-Hill, 1997.
- 2) Machine Learning, SaikatDutt, Subramanian Chandramouli, Amit Kumar Das, Pearson, 2019.

Reference Books:

- 6. EthernAlpaydin, "Introduction to Machine Learning", MIT Press, 2004.
- 7. Stephen Marsland, "Machine Learning -An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 8. Andreas C. Müller and Sarah Guido "Introduction to Machine Learning with Python: A Guide for Data Scientists", Oreilly.

Online Learning Resources:

- 1. Andrew Ng, "Machine Learning" https://www.deeplearning.ai/machine-learning-yearning/
- 2. Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press. https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

3. http://nptel.ac.in/courses/106106139/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 3 0 0 3

(20A05502T) ARTIFICIAL INTELLIGENCE

Course Objectives:

This course is designed to:

- Introduce Artificial Intelligence
- Teach about the machine learning environment
- Present the searching Technique for Problem Solving
- Introduce Natural Language Processing and Robotics

Course Outcomes:

After completion of the course, students will be able to

- Apply searching techniques for solving a problem
- Design Intelligent Agents
- Develop Natural Language Interface for Machines
- Design mini robots
- Summarize past, present and future of Artificial Intelligence

UNIT I Introduction Lecture 9Hrs

Introduction: What is AI, Foundations of AI, History of AI, The State of Art.

Intelligent Agents: Agents and Environments, Good Behaviour: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

UNIT II Solving Problems by searching

Lecture 9 Hrs

Problem Solving Agents, Example problems, Searching for Solutions, Uninformed Search Strategies, Informed search strategies, Heuristic Functions, Beyond Classical Search: Local Search Algorithms and Optimization Problems, Local Search in Continues Spaces, Searching with Nondeterministic Actions, Searching with partial observations, online search agents and unknown environments.

UNIT III Reinforcement Learning & Natural Language Processing Lecture 8Hrs

Reinforcement Learning: Introduction, Passive Reinforcement Learning, Active Reinforcement Learning, Generalization in Reinforcement Learning, Policy Search, applications of RL

Natural Language Processing: Language Models, Text Classification, Information Retrieval, Information Extraction.

UNIT IV Natural Language for Communication

Lecture 8 Hrs

Natural Language for Communication: Phrase structure grammars, Syntactic Analysis, Augmented Grammars and semantic Interpretation, Machine Translation, Speech Recognition

Perception: Image Formation, Early Image Processing Operations, Object Recognition by appearance, Reconstructing the 3D World, Object Recognition from Structural information, Using Vision.

UNIT V Robotics Lecture 10Hrs

Robotics: Introduction, Robot Hardware, Robotic Perception, planning to move, planning uncertain movements, Moving, Robotic software architectures, application domains

Philosophical foundations: Weak AI, Strong AI, Ethics and Risks of AI, Agent Components, Agent Architectures, Are we going in the right direction, What if AI does succeed.

Textbooks:

1. Stuart J.Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 3rd Edition, Pearson Education, 2019.

Reference Books:

- 1. Nilsson, Nils J., and Nils Johan Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.
- 2. Johnson, Benny G., Fred Phillips, and Linda G. Chase. "An intelligent tutoring system for the accounting cycle: Enhancing textbook homework with artificial intelligence." Journal of Accounting Education 27.1 (2009): 30-39.

Online Learning Resources:

http://peterindia.net/AILinks.html

http://nptel.ac.in/courses/106106139/

https://nptel.ac.in/courses/106/105/106105152/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 3 0 0 3

(20A05501T) COMPUTER NETWORKS

Course Objectives:

The course is designed to

- Understand the basic concepts of Computer Networks.
- Introduce the layered approach for design of computer networks
- Expose the network protocols used in Internet environment
- Explain the format of headers of IP, TCP and UDP
- Familiarize with the applications of Internet
- Elucidate the design issues for a computer network

Course Outcomes:

After completion of the course, students will be able to

- Identify the software and hardware components of a Computer network
- Design software for a Computer network
- Develop new routing, and congestion control algorithms
- Assess critically the existing routing protocols
- Explain the functionality of each layer of a computer network
- Choose the appropriate transport protocol based on the application requirements

UNIT I Computer Networks and the Internet

Lecture 8Hrs

What Is the Internet? The Network Edge, The Network Core, Delay, Loss, and

Throughput in Packet-Switched Networks (Textbook 2),

Reference Models, Example Networks,

Guided Transmission Media, Wireless Transmission (Textbook 1)

UNIT II The Data Link Layer, Access Networks, and LANs

Lecture 10Hrs

Data Link Layer Design Issues, Error Detection and Correction, Elementary DataLink Protocols, Sliding Window Protocols (Textbook 1)

Introduction to the Link Layer, Error-Detection and -Correction Techniques, Multiple Access Links

and Protocols, Switched Local Area Networks

Link Virtualization: A Network as a Link Layer, Data Center

Networking, Retrospective: A Day in the Life of a Web Page Request (Textbook 2)

UNIT III The Network Layer

Lecture 8Hrs

Routing Algorithms, Internetworking, The Network Layer In The Internet (Text book 1)

UNIT IV The Transport Layer

Lecture 9Hrs

Connectionless Transport: UDP(Text book 2), The Internet Transport Protocols: TCP, Congestion Control(Textbook 1)

UNIT V Principles of Network Applications

Lecture 8Hrs

Principles of Network Applications, The Web and HTTP, Electronic Mail in theInternet, DNS—The Internet's Directory Service, Peer-to-Peer Applications VideoStreaming and Content Distribution Networks(Textbook 2)

Textbooks:

- 1. Andrew S. Tanenbaum, David j. wetherall, Computer Networks, 5th Edition, PEARSON.
- 2. James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", 6th edition, Pearson, 2019.

Reference Books:

- 1. Forouzan, Datacommunications and Networking, 5th Edition, McGraw Hill Publication.
- 2. Youlu Zheng, Shakil Akthar, "Networks for Computer Scientists and Engineers", Oxford Publishers, 2016.

Online Learning Resources:

https://nptel.ac.in/courses/106105183/25

http://www.nptelvideos.in/2012/11/computer-networks.html

https://nptel.ac.in/courses/106105183/3

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 3 0 0 3

(20A38601a) SOFTWARE ENGINEERING

(PROFESSIONAL ELECTIVE COURSE - II)

Course Objectives:

- To learn the basic concepts of software engineering and life cycle models
- To explore the issues in software requirements specification and enable to write SRS documents for software development problems
- To elucidate the basic concepts of software design and enable to carry out procedural and object oriented design of software development problems
- To understand the basic concepts of black box and white box software testing and enable to design test cases for unit, integration, and system testing
- To reveal the basic concepts in software project management

Course Outcomes:

- After completion of the course, students will be able to
- Obtain basic software life cycle activity skills.
- Design software requirements specifications for given problems.
- Implement structure, object oriented analysis and design for given problems.
- Design test cases for given problems.
- Apply quality management concepts at the application level.

UNIT I Basic concepts in software engineering and software project Lecture9 Hrs management

Basic concepts: abstraction versus decomposition, evolution of software engineering techniques, Software development life cycle (SDLC) models: Iterative waterfall model, Prototype model, Evolutionary model, Spiral model, RAD model, Agile models, software project management: project planning, project estimation, COCOMO, Halstead's Software Science, project scheduling, staffing, Organization and team structure, risk management, configuration management.

UNIT II Requirements analysis and specification Lecture 9 Hrs

The nature of software, The Unique nature of Webapps, Software Myths, Requirements gathering and analysis, software requirements specification, Traceability, Characteristics of a Good SRS Document, IEEE 830 guidelines, representing complex requirements using decision tables and decision trees, overview of formal system development techniques, axiomatic specification, algebraic specification.

UNIT III Software Design Lecture 9 Hrs

Good Software Design, Cohesion and coupling, Control Hierarchy: Layering, Control Abstraction, Depth and width, Fan-out, Fan-in, Software design approaches, object oriented vs. function-oriented design. Overview of SA/SD methodology, structured analysis, Data flow diagram, Extending DFD technique to real life

systems, Basic Object-oriented concepts, UML Diagrams, Structured design, Detailed design, Design review, Characteristics of a good user interface, User Guidance and Online Help, Mode-based vs Mode-less Interface, Types of user interfaces, Component-based GUI development, User interface design methodology: GUI design methodology.

UNIT IV Coding and Testing

Lecture 10 Hrs

Coding standards and guidelines, code review, software documentation, Testing, Black Box Testing, White Box Testing, debugging, integration testing, Program Analysis Tools, system testing, performance testing, regression testing, Testing Object Oriented Programs.

UNIT V Software quality, reliability, and other issues Lecture 9 Hrs

Software reliability, Statistical testing, Software quality and management, ISO 9000, SEI capability maturity model (CMM), Personal software process (PSP), Six sigma, Software quality metrics, CASE and its scope, CASE environment, CASE support in software life cycle, Characteristics of software maintenance, Software reverse engineering, Software maintenance processes model, Estimation maintenance cost. Basic issues in any reuse program, Reuse approach, Reuse at organization level.

Textbooks:

- 1. Rajib Mall, "Fundamentals of Software Engineering", 5th Edition, PHI, 2018.
- 2. Pressman R, "Software Engineering- Practioner Approach", McGraw Hill.

Reference Books:

- 1. Somerville, "Software Engineering", Pearson 2.
- 2. Richard Fairley, "Software Engineering Concepts", Tata McGraw Hill.
- 3. JalotePankaj, "An integrated approach to Software Engineering", Narosa

Online Learning Resources:

https://nptel.ac.in/courses/106/105/106105182/

http://peterindia.net/SoftwareDevelopment.html

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 3 0 0 3

(20A05604c) COMPUTER VISION (Professional Elective Course– II)

Course Objectives:

The objective of this course is to understand the basic issues in computer vision and majorapproaches to address the methods to learn the Linear Filters, segmentation by clustering, Edge detection, Texture.

Course Outcomes:

After completing the course, you will be able to:

- Identifybasicconcepts,terminology,theories,modelsandmethodsinthefield of computer vision,
- Describe known principles of human visual system,
- Describebasicmethodsofcomputervisionrelatedtomulti-scalerepresentation, edgedetection and detection of other primitives, stereo, motion and object recognition,
- Suggestadesignofa computer vision system for a specific problem

UNIT I LINEAR FILTERS

Lecture 8Hrs

Introduction to Computer Vision, Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing Filters as Templates, Technique: Normalized Correlation and Finding Patterns, Technique: Scale and Image Pyramids.

UNIT II EDGE DETECTION

Lecture 9Hrs

Noise- Additive Stationary Gaussian Noise, Why Finite Differences Respond to Noise, Estimating Derivatives - Derivative of Gaussian Filters, Why Smoothing Helps, Choosing a Smoothing Filter, Why Smooth with a Gaussian? Detecting Edges-Using theLaplaciantoDetectEdges,Gradient-BasedEdgeDetectors,Technique:OrientationRepresentations and Corners.

UNIT III TEXTURE

Lecture 9Hrs

Representing Texture –Extracting Image Structure with Filter Banks, Representing Texture using the Statistics of Filter Outputs, Analysis (and Synthesis) Using Oriented Pyramids –The Laplacian Pyramid, Filters in the Spatial Frequency Domain, Oriented Pyramids,

Application:SynthesizingTexturesforRendering,Homogeneity,SynthesisbySamplingLocalModels, Shape from Texture, Shape from Texture for Planes,

UNIT IV SEGMENTATION BY CLUSTERING

Lecture 8Hrs

What is Segmentation, Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection and Background Subtraction. Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering. The Hough Transform, Fitting Lines, Fitting Curves

UNIT V RECOGNIZATIONBYRELATIONSBETWEENTEMPLATES

Lecture 8Hrs

Finding Objects by Voting on Relations between Templates, Relational Reasoning Using Probabilistic Models and Search, Using Classifiers to Prune Search, Hidden Markov Models, Application: HMM and Sign Language Understanding, Finding People with HMM.

Textbooks:

David A. Forsyth, Jean Ponce, Computer Vision-A Modern Approach, PHI, 2003.

Reference Books:

- 1. Geometric Computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, Springer;1 edition,2001by Sommer.
- 2. DigitalImageProcessingandComputerVision,1/e,bySonka.
- 3. ComputerVisionandApplications:ConciseEdition(WithCD)byJack,AcademyPress,2000.

Online Learning Resources:

https://nptel.ac.in/courses/106105216

https://nptel.ac.in/courses/108103174

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 3 0 0 3

(20A38601b) COMPUTER GRAPHICS & ANIMATION Professional Elective Course– II

Course Objectives:

- To introduce the use of the components of a graphics system and become familiar with the building approach of graphics system components and related algorithms.
- To provide insights on how to scan, convert the basic geometrical primitives, how to transform the shapes to fit them as per the picture definition.
- To provide an understanding of mapping from world coordinates to device coordinates, clipping, and projections.
- To discuss the application of computer graphics concepts in the development of computer games, information visualization, and business applications.
- To familiarize the students with various approaches, methods and techniques of Animation Technology.

Course Outcomes:

After completion of the course, students will be able to

- Implement line, circle and ellipse drawing algorithms.
- Design applications that display graphic images to given specifications
- Inspect various algorithms to scan, convert the basic geometrical primitives, transformations, area filling, clipping.
- Apply simple and composite transformations on graphics objects/elements.
- Implement filling algorithms, line and polygon clipping algorithms and create animations.

UNIT I Lecture 8Hrs

Introduction to Computer Graphics and Raster Scan Graphics

Introduction to Computer Graphics: Overview of Computer Graphics, Raster Refresh Graphics Displays, Cathode Ray Tube Basics, Video Basics, Flat Panel Displays, Hardcopy Output devices, Interactive Devices, Data Generation Devices, Graphical User Interfaces.

Raster Scan Graphics: Line drawing algorithms, DDA, Bresenham's Algorithm, Circle Generation-Bresenham's Algorithm, Filled Area Algorithms: Scan line: Polygon Filling Algorithm, Boundary Fill Algorithm.

UNIT II Two Dimensional Transformations & Viewing Lecture 9Hrs

Two-Dimensional transformations: transformations, translation, scaling, rotation, reflection, composite transformation.

Two-Dimensional Viewing: The viewing pipeline, Window-to-Viewport Coordinate Transformation, Point Clipping, Line Clipping: - 4-bit code algorithm, Sutherland-Cohen algorithm, parametric line clipping algorithm (Cyrus Beck), Polygon clipping algorithm: Sutherland-Hodgeman polygon clipping algorithm.

UNIT III Three Dimensional Transformations & Viewing Lecture 8Hrs

Three-Dimensional Transformations: Three-dimensional graphics concept, Matrix representation of 3 D Transformations, Composition of 3-D transformation.

Three-Dimensional Viewing: Projections, types of projections, mathematics of planner geometric projections, coordinate systems. Hidden surface removal: Introduction to hidden surface removal. Z-buffer algorithm, scanline algorithm, area subdivision algorithm

UNIT IV Representing Curves and Surfaces Lecture 8Hrs

Representing Curves and Surfaces: Parametric representation of curves: Bezier curves, B-Spline curves. Parametric representation of surfaces; Interpolation method.

Rendering: Illumination Models, Shading Models for Polygons, Shadows, Transparency, Displaying Light Intensities, Polygon-Rendering Methods.

UNIT V Computer Animation

Lecture 9 Hrs

Fundamentals of computer animation, Animation Techniques. Raster Animations, Computer-Animation Languages, Key Frame Systems, Motion Specifications.

Textbooks:

- 1. Hearn, D. and Pauline Baker, M., Computer Graphics, 2nd Edition, Pearson Education, 2002.
- 2. Procedural Elements for Computer Graphics David F. Rogers, 2001, T.M.H Second Edition.
- 3. "Computer Graphics Second edition", Zhigandxiang, Roy Plastock, Schaum's outlines, Tata Mc Graw hill edition.
- 4. Computer Graphics, R. K. Maurya, John Wiley

Reference Books:

- 1. Neuman, W.M., and Sproull, R.F., Principles of Interactive Computer Graphics, McGraw Hill Book Co., 1979.
- 2. Fundamentals of 3Dimensional Computer Graphics by Alan Watt, 1999, Addision Wesley.
- 3. Computer Graphics: Secrets and Solutions by Corrign John, BPB 4
- 4. M.C. Trivedi, NN Jani, Computer Graphics, Jaico Publications
- 5. Rishabh Anand, Computer Graphics- A practical Approach, Khanna Publishing House

Online Learning Resources:

https://nptel.ac.in/courses/106106090

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 0 0 3 1.5

(20A05602P) MACHINE LEARNING LAB

Course Objectives:

- Make use of Data sets in implementing the machine learning algorithms
- Implement the machine learning concepts and algorithms in any suitable language of choice.

Course Outcomes:

After completion of the course, students will be able to

- Understand the implementation procedures for the machine learning algorithms.
- Design Java/Python programs for various Learning algorithms.
- Apply appropriate data sets to the Machine Learning algorithms.
- Identify and apply Machine Learning algorithms to solve real world problems.

List of Experiments:

Note:

- a) The programs can be implemented in either JAVA or Python.
- b) For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes or APIs of Java/Python.
- c) Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.
- 1. Implement and demonstrate the FIND-Salgorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
- 2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.
- 3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample.
- 4. Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
- 5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the

accuracy, precision, and recall for your data set.

- 7. Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
- 8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- 9. Write a program to implement a k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

References:

- 1. Aamodt, Agnar, and Enric Plaza. "Case-based reasoning: Foundational issues, methodological variations, and system approaches." AI communications 7.1 (1994): 39-59.
- 2. Adebayo, Julius, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. "Sanity checks for saliency maps." arXiv preprint arXiv:1810.03292 (2018).
- 3. Alain, Guillaume, and YoshuaBengio. "Understanding intermediate layers using linear
- 4. Classifier probes." arXiv preprint arXiv:1610.01644 (2016).

Online Learning Resources/Virtual Labs:

http://vlabs.iitb.ac.in/vlabs-dev/labs/machine learning/labs/index.php

https://www.numpy.org/

https://www.scipy.org/

https://matplotlib.org/

https://pandas.pydata.org/

https://scikit-learn.org/stable/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 0 0 3 1.5

(20A05501P) COMPUTER NETWORKS LAB

Course Objectives:

- To understand the different types of networks
- To discuss the software and hardware components of a network
- To enlighten the working of networking commands supported by operating system
- To impart knowledge of Network simulator 2/3
- To familiarize the use of networking functionality supported by JAVA
- To familiarize with computer networking tools.

Course Outcomes:

After completion of the course, students will be able to

- Apply the existing algorithms for error and flow control
- Experiment with the Network simulation environment
- Experiment with socket programming
- Develop various applications using socket programming
- Design the necessary Security and Authentication algorithms

List of Experiments:

- 1. Implementation of a program for CRC and Hamming code for Error Handling.
- 2. Implementation of a program for Remote command execution (Two M/C's maybe used)
- 3. Implementation of an authentication algorithm to access a file.
- 4. Implement a Chatting application using JAVA TCP and UDP sockets.
- 5. Implementation of a Socket program for Echo/Ping/Talk commands.
- 6. Creation of a Socket between two Computers and Enable File Transfer between them using a) TCP b) UDP
- 7. Create a Socket using HTTP for Web Page Upload & Download.
- 8. Using Wireshark perform the following operations:
 - 1.Inspect HTTP Traffic
 - 2.Inspect HTTP Traffic from a Given IP Address,
 - 3.Inspect HTTP Traffic to a Given IP Address,
- 4. Reject Packets to Given IP Address,
- 5. Monitor Apache and MySQL Network Traffic.
- 9. Use CISCO Packet tracer software to build network topology and configure using Distance

- vector routing protocol.
- 10. Use CISCO Packet tracer software to build network topology and configure using Link State routing protocol.
- 11. Install Network Simulator 2/3. Create a wired network using dumbbell topology. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.
- 12. Create a static wireless network. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.
- 13. Create a mobile wireless network. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.

References:

- 1. ShivendraS.Panwar, Shiwen Mao, Jeong-dong Ryoo, and Yihan Li, "TCP/IP Essentials: A Lab-Based Approach", Cambridge University Press, 2004.
- 2. Cisco Networking Academy, "CCNA1 and CCNA2 Companion Guide", Cisco Networking Academy Program, 3rd edition, 2003.
- 3. Elloitte Rusty Harold, "Java Network Programming", 3rd edition, O'REILLY, 2011.

Online Learning Resources/Virtual Labs:

- 1. https://www.netacad.com/courses/packet-tracer Cisco Packet Tracer.
- 2. Ns Manual, Available at: https://www.isi.edu/nsnam/ns/ns-documentation.html, 2011.
- 3. https://www.wireshark.org/docs/wsug_html_chunked/ -Wireshark.
- 4. https://nptel.ac.in/courses/106105183/25
- 5. http://www.nptelvideos.in/2012/11/computer-networks.html
- 6. https://nptel.ac.in/courses/106105183/3
- 7. http://vlabs.iitb.ac.in/vlabs-dev/labs_local/computer-networks/labs/explist.php

(20A05502P) ARTIFICIAL INTELLIGENCE LAB

Course Objectives:

- To teach the methods of implementing algorithms using artificial intelligence techniques
- To illustrate search algorithms

 To demonstrate the building of intelligent agents

Course Outcomes:

After completion of the course, students will be able to

- Implement search algorithms
- Solve Artificial intelligence problems
- Design chatbot and virtual assistant

List of Experiments:

- 1. Write a program to implement DFS and BFS
- 2. Write a Program to find the solution for traveling salesman Problem
- 3. Write a program to implement Simulated Annealing Algorithm
- 4. Write a program to find the solution for the wumpus world problem
- 5. Write a program to implement 8 puzzle problem
- 6. Write a program to implement Towers of Hanoi problem
- 7. Write a program to implement A* Algorithm
- 8. Write a program to implement Hill Climbing Algorithm
- 9. Build a Chatbot using AWS Lex, Pandora bots.
- 10. Build a bot that provides all the information related to your college.
- 11. Build a virtual assistant for Wikipedia using Wolfram Alpha and Python
- 12. The following is a function that counts the number of times a string occurs in another string:
- # Count the number of times string s1 is found in string s2

defcountsubstring(s1,s2):

count = 0

```
for i in range(0,len(s2)-len(s1)+1):

if s1 == s2[i:i+len(s1)]:

count += 1

return count
```

For instance, countsubstring('ab', 'cabalaba') returns 2.

Write a recursive version of the above function. To get the rest of a string (i.e. everything but the first character).

- 13. Higher order functions. Write a higher-order function count that counts the number of elements in a list that satisfy a given test. For instance: count (lambda x: x>2, [1, 2, 3, 4, 5]) should return 3, as there are three elements in the list larger than 2. Solve this task without using any existing higher-order function.
- 14. Brute force solution to the Knapsack problem. Write a function that allows you to generate random problem instances for the knapsack program. This function should generate a list of items containing N items that each have a unique name, a random size in the range 1...... 5 and a random value in the range 1..... 10.

Next, you should perform performance measurements to see how long the given knapsack solver take to solve different problem sizes. You should perform at least 10 runs with different randomly generated problem instances for the problem sizes 10,12,14,16,18,20 and 22. Use a backpack size of 2:5 x N for each value problem size N. Please note that the method used to generate random numbers can also affect performance, since different distributions of values can make the initial conditions of the problem slightly more or less demanding.

How much longer time does it take to run this program when we increase the number of items? Does the backpack size affect the answer?

Try running the above tests again with a backpack size of 1 x N and with 4:0 x N.

15. Assume that you are organising a party for N people and have been given a list L of people who, for social reasons, should not sit at the same table. Furthermore, assume that you have C tables (that are infinitely large).

Write a function layout (N,C,L) that can give a table placement (i.e. a number from 0::C-1) for each guest such that there will be no social mishaps.

For simplicity we assume that you have a unique number 0N-1 for each guest and that the list of restrictions is of the form [(X, Y) ...] denoting guests X, Y that are not allowed to sit together. Answer with a dictionary mapping each guest into a table assignment, if there are no possible layouts of the guests you should answer False.

References:

- 1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: a logical approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem solving", Fourth Edition, Pearson Education, 2002.
- 3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers, 1998.
- 4. Artificial Neural Networks, B. Yagna Narayana, PHI
- 5. Artificial Intelligence, 2nd Edition, E.Rich and K.Knight, TMH.
- **6.** Artificial Intelligence and Expert Systems, Patterson, PHI.

Online Learning Resources/Virtual Labs:

https://www.tensorflow.org/

https://pytorch.org/

https://github.com/pytorch

https://keras.io/

https://github.com/keras-team

http://deeplearning.net/software/theano/

https://github.com/Theano/Theano

https://caffe2.ai/

https://github.com/caffe2

https://deeplearning4j.org/Scikit-learn:https://scikit-learn.org/stable/

https://github.com/scikit-learn/scikit-learn

https://www.deeplearning.ai/

https://opencv.org/

https://github.com/qqwweee/keras-yolo3

https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opency/

https://developer.nvidia.com/cuda-math-library

http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/index.php

(20A52401) SOFT SKILLS

Course Objectives:

- To encourage all round development of the students by focusing on soft skills
- To make the students aware of critical thinking and problem-solving skills
- To develop leadership skills and organizational skills through group activities
- To function effectively with heterogeneous teams

Course Outcomes:

By the end of the program students should be able to

- Memorize various elements of effective communicative skills
- Interpret people at the emotional level through emotional intelligence
- apply critical thinking skills in problem solving
- analyse the needs of an organization for team building
- Judge the situation and take necessary decisions as a leader
- Develop social and work-life skills as well as personal and emotional well-being

UNIT I Soft Skills & Communication Skills 10 Hrs

Introduction, meaning, significance of soft skills – definition, significance, types of communication skills - Intrapersonal & Inter-personal skills - Verbal and Non-verbal Communication

Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – self- expression – articulating with felicity

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speeches- convincing-negotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non- verbal clues and remedy the lapses on observation

UNIT II Critical Thinking 10 Hrs

Active Listening – Observation – Curiosity – Introspection – Analytical Thinking – Open-mindedness – Creative Thinking

Activities:

Gathering information and statistics on a topic - sequencing - assorting - reasoning - critiquing issues - placing the problem - finding the root cause - seeking viable solution - judging with rationale - evaluating the views of others - Case Study, Story Analysis

UNIT III Problem Solving & Decision Making 10 Hrs

Meaning & features of Problem Solving – Managing Conflict – Conflict resolution – Methods of decision making – Effective decision making in teams – Methods & Styles

Activities:

Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision. Case Study & Group Discussion

UNIT IV Emotional Intelligence & Stress Management

10 Hrs

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations.

Providing opportunities for the participants to narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT V Leadership Skills 10 Hrs

 $\label{eq:contability-Planning-Public Speaking-Motivation-Risk-Taking-Public Speaking-Motivation-Risk-Taking-Team Building-Time Management$

Activities:

Forming group with a consensus among the participants- choosing a leader- encouraging the group members to express views on leadership- democratic attitude- sense of sacrifice – sense of adjustment – vision – accommodating nature- eliciting views on successes and failures of leadership using the past knowledge and experience of the participants, Public Speaking, Activities on Time Management, Motivation, Decision Making, Group discussion etc.

NOTE-:

- 1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.
- 2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear or for good Leadership Mahendar Singh Dhoni etc.

Textbooks:

- 1. Personality Development and Soft Skills (English, Paperback, Mitra BarunK.)Publisher: Oxford University Press; Pap/Cdr edition (July 22, 2012)
- 2. Personality Development and Soft Skills: Preparing for Tomorrow, <u>Dr Shikha Kapoor</u>Publisher: I K International Publishing House; 0 edition (February 28, 2018)

Reference Books:

- **1.** Soft skills: personality development for life success by Prashant Sharma, BPB publications 2018.
- 2. Soft Skills By Alex K. Published by S.Chand
- **3.** Soft Skills: An Integrated Approach to Maximise Personality Gajendra Singh Chauhan, Sangeetha Sharma Published by Wiley.
- 4. Communication Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yking books
- 5. SOFT SKILLS for a BIG IMPACT (English, Paperback, RenuShorey) Publisher: Notion Press
- **6.** Life Skills Paperback English Dr. Rajiv Kumar Jain, Dr. Usha Jain Publisher: Vayu Education of India

Online Learning Resources:

- 1. https://youtu.be/DUIsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q
- **2.** https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 3. https://youtu.be/-Y-R9hD171U
- **4.** https://youtu.be/gkLsn4ddmTs
- **5.** https://youtu.be/2bf9K2rRWwo
- **6.** https://youtu.be/FchfE3c2jzc

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– III-II Sem L T P C 2 0 0 0

(20A99601) INTELLECTUAL PROPERTY RIGHTS AND PATENTS (Mandatory Non-Credit Course)

Course Objectives:

• This course introduces the student to the basics of Intellectual Property Rights, Copy Right Laws, Cyber Laws, Trade Marks and Issues related to Patents. The overall idea of the course is to help and encourage the student for startups and innovations

Course Outcomes:

- Understand IPR law & Cyber law
- Discuss registration process, maintenance and litigations associated with trademarks
- Illustrate the copy right law

Enumerate the trade secret law.

UNIT I

Introduction to Intellectual Property Law – Evolutionary past – Intellectual Property Law Basics – Types of Intellectual Property – Innovations and Inventions of Trade related Intellectual Property Rights – Agencies Responsible for Intellectual Property Registration – Infringement – Regulatory – Overuse or Misuse of Intellectual Property Rights –Compliance and Liability Issues.

UNIT II

Introduction to Copyrights – Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of performers – Copyright Formalities and Registration – Limitations – Infringement of Copyright – International Copyright Law-Semiconductor Chip Protection Act.

UNIT III

Introduction to Patent Law – Rights and Limitations – Rights under Patent Law – Patent Requirements – Ownership and Transfer – Patent Application Process and Granting of Patent – Patent Infringement and Litigation – International Patent Law – Double Patenting – Patent Searching – Patent Cooperation Treaty – New developments in Patent Law- Invention Developers and Promoters.

UNIT IV

Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Transfer of rights – Inter parties Proceedings – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law.

UNIT V

Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement – Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law.Introduction to Cyber Law – Information Technology Act – Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy – International aspects of Computer and Online Crime.

Textbooks:

- 1. Deborah E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi
- 2. Kompal Bansal & Parishit Bansal "Fundamentals of IPR for Engineers", BS Publications (Press)
- 3. Cyber Law. Texts & Cases, South-Western's Special Topics Collections

References:

- 1. Prabhuddha Ganguli: 'Intellectual Property Rights' Tata Mc-Graw Hill, New Delhi
- 2. Richard Stim: "Intellectual Property", Cengage Learning, New Delhi.
- 3. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books. New Delhi.
- 4. M. Ashok Kumar and Mohd. Iqbal Ali: "Intellectual Property Right" Serials Pub.

(20A05701a) CLOUD COMPUTING (Professional Elective Course-III)

Course Objectives:

- Examine the state-of-the art Distributed Computing systems
- Understand fundamentals and essentials of Cloud Computing
- Understand the importance of virtualization in Cloud Computing and now how this has enabled the development of Cloud Computing
- Explore Cloud computing simulation tools
- Understand Cloud computing programming models
- Explore import cloud computing driven systems such as openstack, Aneka, public clouds

Course Outcomes:

After completion of the course, students will be able to

- Explain the principles of Cloud computing systems
- Compare the strengths and limitations of Cloud Computing
- Understand the private, hybrid and public clouds, followed by right selection of Cloud for the specific application types
- Identify the appropriate Cloud service for a given application
- Evaluate the comparative advantages and disadvantages of virtualization, open-source tools,
 Public Clouds
- Design and host the application in Private, Hybrid and Public Clouds using Thread, Task and MapReduce programming models.

UNIT I Introduction to Cloud Computing

8 Hrs

Cloud Computing Insights- Distributed Computing, High Performance Computing, Utility and Enterprise Grid Computing, Cluster Computing, Cloud Computing fundamentals, Essential Characteristics, On Demand Self Service, Location independent resource pooling, Elastic Computing, Measured Service, Comparing cloud providers with traditional IT service providers, Vendor Lock-in, security level of third party- Security issues: Government policies.

UNIT II Cloud Architecture- Layers and Models

8 Hrs

Cloud computing architecture, Layers of Cloud computing- IaaS, PaaS and SaaS, Cloud deployment models- Private, Public, Hybrid and Community Clouds, Advantages of Cloud Computing.

UNIT III Virtualization

9 Hrs

Introduction, Characteristics of Virtualized Environments, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Virtual machines and Virtualization of Clusters and Data Centres, Case studies – Xen Virtual Machine monitors – Xen API, VMware- VMware products- VMware features, Microsoft Virtual Server- Features of Microsoft Virtual Server, Openstack.

UNIT IV Simulators and Programming Models

9 Hrs

Cloudsim Open-source framework, Simulate VMs, memory, network, disks; Aneka – Cloud computing Framework for Enterprise Cloud applications development, Aneka Architecture, Programming models: Thread, Task and MapReduce,

UNIT V Developing Cloud Applications

9 Hrs

Case studies – Salesforce.com for SaaS application development, GAE- Google App Engine, Microsoft Windows Azure – public resources for VMs and Services, AWS- Amazon Web Services – public cloud registration, Services, OpenStack – Open Source Development Platform for Clouds and tools.

Textbooks:

1. RajkumarBuyya, Christian Vecchiola, S. ThammaraiSelvi, "Mastering Cloud Computing – Foundations and applications", McGraw Hill Publications,

2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing – A Practical Approach", Mc Graw Hill, Inc, New York, NY, USA.

Reference Books:

- 1. Kai Hwang, Geoffrey C Fox, Jack J. Dongarra, "Distributed and Cloud Computing, Morgan Kaufmann.
- 2. Cloud Computing Principles and Paradigms, John Wiley & Sons publications

Online Learning Resources:

https://nptel.ac.in/courses/106105167 https://archive.nptel.ac.in/courses/106/105/106105167/

(20A05703c) DEEP LEARNING

(Professional Elective Course-III)

Course Objectives:

- Demonstrate the major technology trends driving Deep Learning
- Build, train, and apply fully connected deep neural networks
- Implement efficient (vectorized) neural networks
- Analyse the key parameters and hyper parameters in a neural network's architecture

Course Outcomes:

After completion of the course, students will be able to

- Demonstrate the mathematical foundation of neural network
- Describe the machine learning basics
- Differentiate architecture of deep neural network
- Build a convolutional neural network
- Build and train RNN and LSTMs

UNIT I Lecture 8Hrs

Linear Algebra: Scalars, Vectors, Matrices and Tensors, Matrix operations, types of matrices, Norms, Eigen decomposition, Singular Value Decomposition, Principal Components Analysis. Probability and Information Theory: Random Variables, Probability Distributions, Marginal Probability, Conditional Probability, Expectation, Variance and Covariance, Bayes' Rule, Information Theory. Numerical Computation: Overflow and Underflow, Gradient-Based Optimization, Constrained Optimization, Linear Least Squares.

UNIT II Lecture 9Hrs

Machine Learning: Basics and Under fitting, Hyper parameters and Validation Sets, Estimators, Bias and Variance, Maximum Likelihood, Bayesian Statistics, Supervised and Unsupervised Learning, Stochastic Gradient Descent, Challenges Motivating Deep Learning. Deep Feed forward Networks: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and other Differentiation Algorithms.

Lecture 8Hrs

UNIT III

Regularization for Deep Learning: Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problems, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multi-Task Learning, Early Stopping, Parameter Tying and Parameter Sharing, Sparse Representations, Bagging and Other Ensemble Methods, Dropout, Adversarial Training, Tangent Distance, Tangent Prop and Manifold Tangent Classifier. Optimization for Training Deep Models: Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms.

UNIT IV Lecture 9Hrs

Convolutional Networks: The Convolution Operation, Pooling, Convolution, Basic Convolution Functions, Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or Unsupervised Features, Basis for Convolutional Networks.

Lecture 8Hrs

UNIT V

Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, LSTM, Gated RNNs, Optimization for Long-Term Dependencies, Auto encoders, Deep Generative Models.

Textbooks:

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
- 2 Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017.

Reference Books:

- 1. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.
- Deep learning Cook Book, Practical recipes to get started Quickly, DouweOsinga, O'Reilly, Shroff Publishers, 2019.

Online Learning Resources:

1.https://keras.io/datasets/

2.http://deeplearning.net/tutorial/deeplearning.pdf

3.https://arxiv.org/pdf/1404.7828v4.pdf

4.https://www.cse.iitm.ac.in/~miteshk/CS7015.html

5.https://www.deeplearningbook.org

6.https://nptel.ac.in/courses/106105215

Lecture 8Hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– IV-I Sem L T P C 3 0 0 3

(20A05603T) INTERNET OF THINGS

Professional Elective III

Course Objectives:

- Understand the basics of Internet of Things and protocols.
- Discuss the requirement of IoT technology
- Introduce some of the application areas where IoT can be applied.
- Understand the vision of IoT from a global perspective, understand its applications, determine its market perspective using gateways, devices and data management

Course Outcomes:

After completion of the course, students will be able to

- Understand general concepts of Internet of Things.
- Apply design concept to IoT solutions
- Analyze various M2M and IoT architectures
- Evaluate design issues in IoT applications
- Create IoT solutions using sensors, actuators and Devices

UNIT I Introduction to IoT

Definition and Characteristics of IoT, physical design of IoT, IoT protocols, IoT communication models, IoT Communication APIs, Communication protocols, Embedded Systems, IoT Levels and Templates

UNIT II Prototyping IoT Objects using Lecture 9Hrs
Microprocessor/Microcontroller

Working principles of sensors and actuators, setting up the board – Programming for IoT, Reading from Sensors, Communication: communication through Bluetooth, Wi-Fi.

UNIT III IoT Architecture and Protocols Lecture 8Hrs

Architecture Reference Model- Introduction, Reference Model and architecture, IoT reference Model, Protocols- 6LowPAN, RPL, CoAP, MQTT, IoT frameworks- Thing Speak.

UNIT IV Device Discovery and Cloud Services for IoT Lecture 8Hrs

Device discovery capabilities- Registering a device, Deregister a device, Introduction to Cloud Storage models and communication APIs Web-Server, Web server for IoT.

UNIT V UAV IoT Lecture 10Hrs

Introduction toUnmanned Aerial Vehicles/Drones, Drone Types, Applications: Defense, Civil, Environmental Monitoring; UAV elements and sensors- Arms, motors, Electronic Speed Controller(ESC), GPS, IMU, Ultra sonic sensors; UAV Software –Arudpilot, Mission Planner, Internet of Drones(IoD)- Case study FlytBase.

Textbooks:

- Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014.
- 2. Handbook of unmanned aerial vehicles, K Valavanis; George J Vachtsevanos, New York, Springer, Boston, Massachusetts: Credo Reference, 2014. 2016.

Reference Books:

- Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.
- 2. ArshdeepBahga, Vijay Madisetti Internet of Things: A Hands-On Approach, Universities Press, 2014.
- 3. The Internet of Things, Enabling technologies and use cases Pethuru Raj, Anupama C. Raman, CRC Press.
- 4. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013
- 5. Cuno Pfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493-9357-1
- 6. DGCA RPAS Guidance Manual, Revision 3 2020
- 7. Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs, John Baichtal

Online Learning Resources:

- 1. https://www.arduino.cc/
- 2. https://www.raspberrypi.org/
- 3. https://nptel.ac.in/courses/106105166/5

 $4. \quad https://nptel.ac.in/courses/108108098/4$

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– IV-I Sem L T P C 3 0 0 3

(20A38701a) USABILITY STUDIES AND EVALUATION (Professional Elective Course– IV)

Course Objectives:

- To develop an understanding of usability testing and evaluation concepts and techniques.
- To gain experience conducting both formal and informal usability evaluations.
- To develop skills as a usability testing moderator.
- To understand trade-offs in applying different evaluation techniques.
- To gain hands-on experience with the details of designing, planning, conducting, and reporting results of a usability evaluation.

Course Outcomes:

After completion of the course, students will be able to

- Describe the human centered design process and usability engineering process and their roles in system design and development.
- Discuss usability design guidelines, their foundations, assumptions, advantages, and weaknesses
- Describe basics of human subject's research.
- Design a user interface based on analysis of human needs and prepare a prototype system.
- Assess user interfaces using different usability engineering techniques.
- Make a final report that justifies design decisions.

UNIT I Overview of Usability

Lecture 8Hrs

Introduction: Usability and Other Considerations, Definition of Usability, Example: Measuring the Usability of Icons, Usability Trade-Offs, Categories of Users and Individual User Differences.

Generations of User Interfaces: Batch Systems, Line-Oriented Interfaces, Full-Screen Interfaces, Graphical User Interfaces, Next-Generation Interfaces, Long-Term Trends in Usability.

UNIT II Usability Engineering Lifecycle

Lecture 9Hrs

Scenario-Based Usability Engineering: Design by Scenario-Marissa's Gravity Project, Managing Software Development, Usability in Software Development, Doing Scenario-Based Usability Engineering, Example-Based Learning of SBD.

The Usability Engineering Lifecycle: Know the User, Competitive Analysis, Goal Setting, Parallel Design, Participatory Design, Coordinating the Total Interface, Guidelines and Heuristic Evaluation, Prototyping, Interface Evaluation, Iterative Design, Follow-Up Studies of Installed Systems, Meta-Methods, Prioritizing, Usability Activities.

UNIT III Usability Heuristics and Testing

Lecture 9Hrs

Usability Heuristics: Simple and Natural Dialogue, Speak the Users' Language, Minimize User Memory Load, Consistency, Feedback, Clearly Marked Exits, Shortcuts, Good Error Messages, Prevent Errors, Help and Documentation, Heuristic Evaluation.

Usability Testing: Test Goals and Test Plans, Getting Test Users, Choosing Experimenters, Ethical Aspects of Tests with Human, Subjects, Test Tasks, Stages of a Test, Performance Measurement, Thinking Aloud, Usability Laboratories.

UNIT IV Usability Assessment Methods and Interface Standards Lecture 8Hrs

Usability Assessment Methods beyond Testing: Observation, Questionnaires and Interviews, Focus Groups, Logging, Actual Use, User Feedback, Choosing Usability Methods.

Interface Standards: National, International and Vendor Standards, Producing Usable In-House Standards.

UNIT V International User Interfaces and Future Lecture 8Hrs Developments

International User Interfaces: International Graphical Interfaces, International Usability Engineering, Guidelines for Internationalization, Resource Separation, Multilocale Interfaces.

Future Developments: Theoretical Solutions, Technological Solutions, CAUSE Tools: Computer-Aided Usability Engineering, Technology Transfer

Textbooks:

- 1. J. Nielsen, Usability Engineering, Morgan Kaufmann, San Francisco, 1993.
- 2. Mary Beth Rosson and John M. Carroll, Usability Engineering: Scenario-Based Development of Human-Computer Interaction, Morgan Kaufmann.

Reference Books:

- 1. J. Preece, Y.Rogers and H. Sharp, Interaction Design: Beyond Human Computer Interaction, John Wiley and Sons, Delhi, 2003.
- 2. W. O Galitz, The Essential Guide to User Interface Design, John Wiley and Sons Dream Tech India Pvt.Ltd, Delhi, 2002.
- 3. Developing User Interfaces Ensuring Usability through Product & Process by Deborah Hix,

Rex Hartson, Wiley.

Online Learning Resources:

 $https://online courses.nptel.ac.in/noc22_de03/preview$

(20A38701b) ANIMATION PRINCIPLES AND DESIGN Professional Elective Course– IV

Course Objectives:

- To understand the concept of 2D animation, cycles, and scenes.
- To understand basic concepts of animation, different types/ style and their workflow.
- To explain tools and techniques for 2D animation.
- To examine various processes of animation techniques that are developed with various equipment.

Course Outcomes:

After completion of the course, students will be able to

- Identify and apply various Animation Principles.
- Relate knowledge of various animation history and techniques.
- Determine various animation techniques with basic principles of animation.
- Create a 2D animation short movie.
- Create a complete promotional campaign using Animation and Graphics technique.
- Demonstrate skills in the use of industry standard tools.

UNIT I Drawing Techniques

Lecture 8Hrs

What is Animation, History of Animation – Starting from Early approaches to motion in art, Animation before film, Traditional Animation – The silent era, Walt Disney & Warner Bros., Snow White & the seven dwarfs, The Television era, Stop-motion, CGI Animation - till date. Different Types of Animation, Basic Drawing Concepts of Visualization Illustration and Sketching Basic Shapes and Sketching Techniques

UNIT II Script Writing and Character Enhancement

Basic Script and Story Board, Concepts of 2D, Cel Animation, Character Design and Development, Traditional animation, key frame animation, key poses and time stretch, character design development, facial expressions and walk cycles.

UNIT III Animation Tools Processing

Lecture 8Hrs

Lecture 9Hrs

Scripting & Storyboarding with Toon Boom Pro, Animation Process Development, Usage of tools for Digital Painting and vector drawings, How to develop a character and background creation, Usage of timeline and its purpose.

UNIT IV Principles, Storytelling & Editing

Lecture 8Hrs

Animation Concept Acting and Direction for Animation Timing for Animation Storytelling Techniques Script Writing Concept Design and Development Storyboarding and Anima tics, Audio and Video Streaming and Editing, Previsualization

UNIT V Advanced Techniques of Production, Digital Animation Lecture 9 Hrs
Advanced 2D Production and Post Production, Digital Animation Scene Planning, Digital Animation
Ink and Paint, and Digital Animation Composting and Effects

Textbooks:

- 1. Edoux, Trish, Ranney, "Complete Anime Guide: Japanese Animation Film Directory and Resource Guide", 'Tiger Mountain Press, 1997.
- 2. Kevin Hedgpeth (Author), Stephen Missal, "Exploring Drawing for Animation, Design Concepts, 1st Edition, march 15, 2004.
- 3. The Illusion of Life: Disney Animation Frank Thomas and Ollie Johnston

Reference Books:

- 1. Pakhira Malay K, "Computer Graphics, Multimedia and Animation", Second Edition, 2010.
- 2. Preston Blair, "Cartooning: Animation 1 with Preston Blair: Learn to animate cartoons step by step (How to Draw & Paint)", Walter Foster Publishing, 2003

Online Learning Resources:

https://onlinecourses.swayam2.ac.in/cec20_cs08/preview

(20A38701c) DIGITAL AUDIO DESIGN AND SYNTHESIS Professional Elective Course– IV

Course Objectives:

- To learn about discrete time sampling, quantization, and signal processing.
- To understand and utilize general digital audio processing theory.
- Describe and demonstrate an understanding of the digital to analog and analog to digital conversion process (using PCM), and how digital audio files are created, stored, and processed.

Course Outcomes:

After completion of the course, students will be able to

- Examine the role of and the creative expectations of the sound designer.
- Learn the typical workflow for audio post production.
- Apply physical properties of sound in future projects.
- Articulate strengths and weaknesses of film, video, and web based sound design.
- Demonstrate technical proficiency in basic sound recording and live studio set-ups.

UNIT I Lecture 8Hrs

Sound and Numbers: Physics of Sound, Digital Basics, Binary Codes, Boolean Algebra, Analog versus Digital.

Fundamentals of Digital Audio: Discrete Time Sampling, The Sampling Theorem, Aliasing, Quantization, Dither.

Digital Audio Recording: Pulse-Code Modulation, Dither Generator, Input Lowpass Filter, Sample-and-Hold Circuit, Analog-to-Digital Converter, Record Processing, Channel Codes.

UNIT II Lecture 9Hrs

Digital Audio Reproduction: Reproduction Processing, Digital-to-Analog Converter, Output Sample-and-Hold Circuit, Output Lowpass Filter, Impulse Response, Digital Filters, Noise Shaping, Output Processing, Alternate Coding Architectures, Timebase Correction.

UNIT III Lecture 8Hrs

Error Correction: Sources of Errors, Quantifying Errors, Objectives of Error Correction, Error Detection, Error-Correction Codes, Reed-Solomon Codes, CIRC, Product Codes, Error Concealment.

UNIT IV Lecture 8Hrs

Digital Sound Synthesis: Introduction to Digital Sound Synthesis, Sampling and Additive Synthesis, Multiple Wavetable, Wave Terrain, Granular, and Subtractive Synthesis.

UNIT V Lecture 9 Hrs

Digital Sound Synthesis: Modulation Synthesis, Physical Modelling and Format Synthesis, Waveform Segment, Graphic, and Stochastic Synthesis.

Textbooks:

- 1. Ken C. Pohlmann, Principles of Digital Audio, Sixth Edition, O'Reilly.
- 2. The Computer Music Tutorial by Curtis Roads.

Reference Books:

- 1. On Sonic Art by Trever Wishart.
- 2. Andy Farnell, Designing Sound, 2010, ISBN: 9780262014410

Online Learning Resources: https://www.my-mooc.com/en/mooc/digitalsounddesign/

(20A05703a) FULL STACK DEVELOPMENT (Professional Elective Course– V)

Course Objectives:

Learn the core concepts of both the frontend and backend programming course, to get familiar with the latest web development technologies.

Course Outcomes:

After completion of the course, students will be able to

- Develop a fully functioning website and deploy on a web server.
- Gain Knowledge about the front end and back end tools
- Find and use of code packages based on their documentation to produce working results in a project.
- Create web pages that function using external data.

UNIT I Web Development Basics

Lecture 8Hrs

Web development Basics - HTML & Web servers Shell - UNIX CLI Version control – Git & Github HTML, CSS

UNIT II Frontend Development

Lecture 9Hrs

Javascript basics OOPS Aspects of JavaScript Memory usage and Functions in JSAJAX for data exchange with server jQuery Framework jQuery events, UI components etc. JSON data format.

UNIT III REACT JS

Lecture 9Hrs

Introduction to React Router and Single Page Applications React Forms, Flow Architecture and Introduction to Redux More Redux and Client-Server Communication

UNIT IV Java Web Development

Lecture 8Hrs

JAVA PROGRAMMING BASICS, Model View Controller (MVC) Pattern MVC Architecture using Spring RESTful API using Spring Framework Building an application using Maven

UNIT V Databases & Deployment

Lecture 8Hrs

Relational schemas and normalization Structured Query Language (SQL) Data persistence using

SpringJDBC Agile development principles and deploying application in Cloud

Textbooks:

- 1. Web Design with HTML, CSS, JavaScript and JQuery Set Book by Jon Duckett Professional JavaScript for Web Developers Book by Nicholas C. Zakas
- 2. Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-Step Guide to Creating Dynamic Websites by Robin Nixon
- 3. AZAT MARDAN, Full Stack Java Script: Learn Back bone. js, Node.jsand Mongo DB.2015

Reference Books:

- 1. Full-Stack JavaScript Development by Eric Bush.
- 2. Tomasz Dyl , Kamil Przeorski , Maciej Czarnecki, Mastering Full Stack React Web Development 2017

Online Learning Resources:

https://ict.iitk.ac.in/product/full-stack-developer-html5-css3-js-bootstrap-php-4/

(20A05703b) BLOCKCHAIN TECHNOLOGY AND APPLICATIONS

(Professional Elective Course-V)

Course Objectives:

- Understand how block chain systems (mainly Bitcoin and Ethereum) work and to securely interact with them,
- Design, build, and deploy smart contracts and distributed applications,
- Integrate ideas from block chain technology into their own projects.

Course Outcomes:

After completion of the course, students will be able to

• Demonstrate the foundation of the Block chain technology and understand the

processes in payment and funding.

- Identify the risks involved in building Block chain applications.
- Review of legal implications using smart contracts.
- Choose the present landscape of Block chain implementations and Understand Crypto currency markets.
- Examine how to profit from trading crypto currencies.

UNIT I Introduction

Lecture 8Hrs

Introduction, Scenarios, Challenges Articulated, Block chain, Block chain Characteristics, Opportunities Using Block chain, History of Block chain. Evolution of Block chain: Evolution of Computer Applications, Centralized Applications, Decentralized Applications, Stages in Block chain Evolution, Consortia, Forks, Public Block chain Environments, Type of Players in Block chain Ecosystem, Players in Market.

UNIT II Block chain Concepts

Lecture 9Hrs

Block chain Concepts: Introduction, Changing of Blocks, Hashing, Merkle-Tree, Consensus, Mining and Finalizing Blocks, Currency aka tokens, security on block chain, data storage on block chain, wallets, coding on block chain: smart contracts, peer-to-peer network, types of block chain nodes, risk associated with block chain solutions, life cycle of block chain transaction.

UNIT III Architecting Block chain solutions

Lecture 9Hrs

Architecting Block chain solutions: Introduction, Obstacles for Use of Block chain, Block chain Relevance Evaluation Framework, Block chain Solutions Reference Architecture, Types of Block chain Applications. Cryptographic Tokens, Typical Solution Architecture for Enterprise Use Cases, Types of Block chain Solutions, Architecture Considerations, Architecture with Block chain Platforms, Approach for Designing Block chain Applications.

UNIT IV Ethereum Block chain Implementation

Lecture 8Hrs

Ethereum Block chain Implementation: Introduction, Tuna Fish Tracking Use Case, Ethereum Ecosystem, Ethereum Development, Ethereum Tool Stack, Ethereum Virtual Machine, Smart Contract Programming, Integrated Development Environment, Truffle Framework, Ganache, Unit Testing, Ethereum Accounts, My Ether Wallet, Ethereum Networks/Environments, Infura, Etherscan, Ethereum Clients, Decentralized Application, Metamask, Tuna Fish Use Case Implementation, Open Zeppelin Contracts

UNIT V Hyper ledger Block chain Implementation

Lecture 8Hrs

Hyper ledger Block chain Implementation, Introduction, Use Case – Car Ownership Tracking, Hyper ledger Fabric, Hyper ledger Fabric Transaction Flow, Fab Car Use Case Implementation, Invoking Chain code Functions Using Client Application.

Advanced Concepts in Block chain: Introduction, Inter Planetary File System (IPFS), Zero-Knowledge Proofs, Oracles, Self-Sovereign Identity, Block chain with IoT and AI/ML Quantum Computing and Blockchain, Initial Coin Offering, Blockchain Cloud Offerings, Blockchain and its Future Potential.

Textbooks:

- 1. Ambadas, Arshad SarfarzAriff, Sham "Blockchain for Enterprise Application Developers", Wiley
- 1. Andreas M. Antonpoulos, "Mastering Bitcoin: Programming the Open Blockchain", O'Reilly

Reference Books:

- 1. Blockchain: A Practical Guide to Developing Business, Law, and Technology Solutions, Joseph Bambara, Paul R. Allen, Mc Graw Hill.
- 2. Blockchain: Blueprint for a New Economy, Melanie Swan, O'Reilly

Online Learning Resources:

- 1. https://github.com/blockchainedindia/resources
- 2. Hyperledger Fabric https://www.hyperledger.org/projects/fabric
- 3. Zero to Blockchain An IBM Redbooks course, by Bob Dill, David Smits https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0 401.htm
- 4. https://nptel.ac.in/courses/106105184
- 5. https://onlinecourses.nptel.ac.in/noc22_cs44/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– IV-I Sem L T P C 3 0 0 3

(20A05702a) FUNDAMENTALS OF AR/VR (Professional Elective Course– V)

Course Objectives:

- To Teach about human interaction with computers
- To Demonstrate Virtual reality
- To introduce to the design of visualization tools
- To explain how to apply VR/MR/AR for various applications.

Course Outcomes:

After completion of the course, students will be able to

- Demonstrate human interaction with computers
- Animate using Virtual reality and 3D Art optimization
- Design audio and video interaction paradigms
- Design Data visualization tools
- Apply VR/AR in various fields in industry

UNIT I Lecture 8Hrs

How Humans interact with Computers: Common term definition, introduction, modalities through the ages (pre- 20th century, through world war-II, post-world war-II, the rise of personal computing, computer miniaturization), why did we just go over all of this? Types of common HCI modalities, new modalities, the current state of modalities for spatial computing devices, current controllers for immersive computing systems, a note on hand tracking and hand pose recognition.

Designing for our Senses, Not our Devices: Envisioning a future, sensory technology explained,

who are we building this future for?, sensory design, five sensory principles, Adob's AR story.

UNIT II Lecture 9Hrs

Virtual Reality for Art: A more natural way of making 3D art, VR for animation.

3D art optimization: Introduction, draw calls, using VR tools for creating 3D art, acquiring 3D models vs making them from scratch.

How the computer vision that makes augmented reality possible works: Who are we?, a brief history of AR, how and why to select an AR platform, mapping, platforms, other development considerations, the AR cloud.

UNIT III Lecture 9Hrs

Virtual reality and augmented reality: cross platform theory: Why cross platform? The role of game engines, understanding 3D graphics, portability lessons from video game design, simplifying the controller input.

Virtual reality toolkit:open source framework for the community: What is VRTK and why people use it? the history of VRTK, welcome to the steam VR unity toolkit, VRTK v4, the future of VRTK, success of VRTK.

Three virtual reality and augmented reality development practices: Developing for virtual reality and augmented reality, handling locomotion, effective use of audio, common interaction paradigms.

UNIT IV Lecture 8Hrs

Data and machine learning visualization design and development in spatial computing: Introduction, understanding data visualization, principles for data and machine learning visualization design and development in spatial computing, why data and machine learning visualization works in spatial computing, 2D data visualization vs 3D data visualization in spatial computing, interactivity in data visualizations and in spatial computing, animation, failures in data visualization, good data visualization design optimize 3D spaces, data representations, infographics, and interactions, defining distinctions in data visualization and big data for machine, how to create data visualization: data visualization creation pipeline, webXR, data visualization challenges in XR, data visualization industry use case examples of data visualization, 3D reconstruction and direct manipulation of real world data, data visualization is for everyone, hands on tutorials, how to create data visualization, resources.

UNIT V Lecture 8Hrs

Character AI and Behaviors: Introduction, behaviors, current practice: Reactive AI, more intelligence in the system, Delibarative AI, machine learning.

The virtual and augmented reality health technology ecosystem: VR/AR health technology application design, standard UX isn't intuitive, tutorial: insight Parkinson's experiment, companies, case studies from leading academic institutions.

Textbooks:

1. Erin Pangilinan, Steve lukas, and Vasanth Mohan, "Creating Augmented & Virtual Realities", 1st edition, O'REILLY, 2019.

Reference Books:

• Steve Aukstakalnis, "Practical Augmented Reality", Pearson Education, 2017.

Online Learning Resources:

https://nptel.ac.in/courses/106106138

https://nptel.ac.in/courses/121106013

(20A52701a) ENTREPRENEURSHIP & INCUBATION (HUMANITIES ELECTIVE II)

Course Objectives:

- To make the student understand about Entrepreneurship
- To enable the student in knowing various sources of generating new ideas in setting up of New enterprise
- To facilitate the student in knowing various sources of finance in starting up of a business
- To impart knowledge about various government sources which provide financial assistance to entrepreneurs/ women entrepreneurs
- To encourage the student in creating and designing business plans

Course Outcomes:

- Understand the concept of Entrepreneurship and challenges in the world of competition.
- Apply the Knowledge in generating ideas for New Ventures.
- Analyze various sources of finance and subsidies to entrepreneur/women Entrepreneurs.
- Evaluate the role of central government and state government in promoting Entrepreneurship.
- Create and design business plan structure through incubations.

UNIT I

Entrepreneurship - Concept, knowledge and skills requirement - Characteristics of successful entrepreneurs - Entrepreneurship process - Factors impacting emergence of entrepreneurship - Differences between Entrepreneur and Intrapreneur - Understanding individual entrepreneurial mindset and personality - Recent trends in Entrepreneurship.

UNIT II

Starting the New Venture - Generating business idea – Sources of new ideas & methods of generating ideas - Opportunity recognition - Feasibility study - Market feasibility, technical/operational feasibility - Financial feasibility - Drawing business plan - Preparing project report - Presenting business plan to investors.

UNIT III

Sources of finance - Various sources of Finance available - Long term sources - Short term sources - Institutional Finance - Commercial Banks, SFC's in India - NBFC's in India - their way of financing in India for small and medium business - Entrepreneurship development programs in India - The entrepreneurial journey- Institutions in aid of entrepreneurship development

UNIT IV

Women Entrepreneurship - Entrepreneurship Development and Government - Role of Central Government and State Government in promoting women Entrepreneurship - Introduction to various incentives, subsidies and grants - Export- oriented Units - Fiscal and Tax concessions available - Women entrepreneurship - Role and importance - Growth of women entrepreneurship in India - Issues & Challenges - Entrepreneurial motivations.

UNIT V

Fundamentals of Business Incubation - Principles and good practices of business incubation- Process of business incubation and the business incubator and how they operate and influence the Type/benefits of incubators - Corporate/educational / institutional incubators - Broader business incubation environment - Pre-Incubation and Post - Incubation process - Idea lab, Business plan structure - Value proposition

Textbooks:

- 1. D F Kuratko and T V Rao, "Entrepreneurship" A South-Asian Perspective Cengage Learning, 2012. (For PPT, Case Solutions Faculty may visit: login.cengage.com)
- 2. Nandan H, "Fundamentals of Entrepreneurship", PHI, 2013

References:

- 1. Vasant Desai, "Small Scale Industries and Entrepreneurship", Himalaya Publishing 2012.
- 2. Rajeev Roy "Entrepreneurship", 2nd Edition, Oxford, 2012.
- 3. B.JanakiramandM.Rizwanal "Entrepreneurship Development: Text & Cases", Excel Books, 2011.
- 4. Stuart Read, Effectual "Entrepreneurship", Routledge, 2013.

E-Resources

- 1. Entrepreneurship-Through-the-Lens-of-enture Capital
- 2. http://www.onlinevideolecture.com/?course=mba-programs&subject=entrepreneurship
- $3. \quad http://nptel.ac.in/courses/122106032/Pdf/7_4.pd$
- 4. http://freevideolectures.com/Course/3514/Economics-/-Management-/-Entrepreneurhip/50

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– IV-I Sem L T P C 3 0 0 3

(20A52701b) MANAGEMENT SCIENCE (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide fundamental knowledge on Management, Administration, Organization & its concepts.
- To make the students understand the role of management in Production
- To impart the concept of HRM in order to have an idea on Recruitment, Selection, Training & Development, job evaluation and Merit rating concepts
- To create awareness on identify Strategic Management areas & the PERT/CPM for better Project Management
- To make the students aware of the contemporary issues in management

Course Outcomes:

- Understand the concepts & principles of management and designs of organization in a practical world
- Apply the knowledge of Work-study principles & Quality Control techniques in industry
- Analyze the concepts of HRM in Recruitment, Selection and Training & Development.
- Evaluate PERT/CPM Techniques for projects of an enterprise and estimate time & cost of project & to analyze the business through SWOT.
- Create Modern technology in management science.

UNITI INTRODUCTION TO MANAGEMENT

Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both. Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's Human relations - Systems Theory - **Organisational Designs** - Line organization - Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of Organization - Social responsibilities of Management.

UNIT II OPERATIONS MANAGEMENT

Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study - Statistical Quality Control- Deming's contribution to Quality. **Material Management -** Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - Purchase Procedure and Stores Management - **Marketing Management -** Concept - Meaning - Nature-Functions of Marketing - Marketing Mix - Channels of Distribution - Advertisement and Sales Promotion - Marketing Strategies based on Product Life Cycle.

UNIT III HUMAN RESOURCES MANAGEMENT (HRM)

HRM - Definition and Meaning – Nature - Managerial and Operative functions - Evolution of HRM - Job Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment - Employee Selection - Process and Tests in Employee Selection - Employee Training and Development - On-the- job & Off-the-job training methods - Performance Appraisal Concept - Methods of Performance Appraisal — Placement - Employee Induction - Wage and Salary Administration

UNIT IV STRATEGIC & PROJECT MANAGEMENT

Definition& Meaning - Setting of Vision - Mission - Goals - Corporate Planning Process - Environmental Scanning - Steps in Strategy Formulation and Implementation - SWOT Analysis - **Project Management -** Network Analysis - Programme Evaluation and Review Technique (PERT) - Critical Path Method (CPM) Identifying Critical Path - Probability of Completing the project within given time - Project Cost- Analysis - Project Crashing (Simple problems).

UNIT V CONTEMPORARY ISSUES IN MANAGEMENT

The concept of Management Information System(MIS) - Materials Requirement Planning (MRP) - Customer Relations Management(CRM) - Total Quality Management (TQM) - Six Sigma Concept - Supply Chain Management(SCM) - Enterprise Resource Planning (ERP) - Performance Management - Business Process Outsourcing (BPO) - Business Process Re-engineering and Bench Marking - Balanced Score Card - Knowledge Management.

Textbooks:

- 1. A.R Aryasri, "Management Science", TMH, 2013
- 2. Stoner, Freeman, Gilbert, Management, Pearson Education, New Delhi, 2012.

References:

- 1. Koontz & Weihrich, "Essentials of Management", 6th edition, TMH, 2005.
- 2. Thomas N.Duening& John M.Ivancevich, "Management Principles and Guidelines", Biztantra.
- 3. Kanishka Bedi, "Production and Operations Management", Oxford University Press, 2004.
- 4. Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

(20A52701c) ENTERPRISE RESOURCE PLANNING (HUMANITIES ELECTIVE-II)

Course Objectives:

- To provide a contemporary and forward-looking on the theory and practice of Enterprise Resource Planning
- To enable the students in knowing the Advantages of ERP
- To train the students to develop the basic understanding of how ERP enriches the
- Business organizations in achieving a multidimensional growth.
- Impart knowledge about the historical background of BPR
- To aim at preparing the students, technologically competitive and make them ready to self-upgrade with the higher technical skills.

Course Outcomes:

- Understand the basic use of ERP Package and its role in integrating business functions.
- Explain the challenges of ERP system in the organization
- Apply the knowledge in implementing ERP system for business
- Evaluate the role of IT in taking decisions with MIS
- Create reengineered business processes with process redesign

UNITI

Introduction to ERP: Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM),

UNITII

Benefits of ERP: Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality Costs, Improved Information Accuracy and Design-making Capability

UNIT III

ERP Implementation Lifecycle: Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post-implementation (Maintenance mode)

UNITIV

BPR: Historical background: Nature, significance and rationale of business process reengineering (BPR), Fundamentals of BPR. Major issues in process redesign: Business vision and process objectives, Processes to be redesigned, Measuring existing processes,

UNITV

IT in ERP: Role of information technology (IT) and identifying IT levers. Designing and building a prototype of the new process: BPR phases, Relationship between BPR phases. MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System.

Textbooks:

- 1. Pankaj Sharma. "Enterprise Resource Planning". Aph Publishing Corporation, New Delhi, 2004.
- 2. Alexis Leon, "Enterprise Resource Planning", IV Edition, Mc.Graw Hill, 2019

References:

- 1. Marianne Bradford "Modern ERP", 3rd edition.
- 2. "ERP making it happen Thomas f. Wallace and Michael
- 3. Directing the ERP Implementation Michael w pelphrey

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD)– IV-I Sem L T P C 3 0 0 3

(20A05706) MOBILE APPLICATIN DEVELOPMENT (Skill Oriented course - V)

Course Objectives:

- Learn the configuration of Android Studio, SDK Manager, and AVD Emulators
- Understand Android UI Components and make use of Material Design for Android
- Learn the usage of Libraries, APIs and handle messages
- Explore various Hybrid App Development Platforms
- Acquire the knowledge of app releases and publishing and app to the play store

Course Outcomes:

After completion of the course, students will be able to

- Demonstrate the configuration of Android Software Development tools
- Design and develop Mobile Applications using Android and Kotlin
- Develop a complex android application by using apis, Libraries, and message handling techniques
- Construct the mobile application using a hybrid framework or SDK
- Release and publish an application on Google Play Store

Activities:

Module 1:

Android OS Architecture: Application Layer, Framework Layer, Libraries and Runtime, Hardware Abstraction Layer, and Kernel

Task: Select any two Mobile Apps used in your mobile phone and note the various functionalities and their corresponding layers

Module 2:

Android Studio: Install Android Studio, SDK Manager, Configure Plugins, Android Virtual Device(AVD) Emulators

Task: Install Android Studio and Configure Latest Android SDKs and Android Virtual Devices

Module 3:

Building your First Application: Understanding Activities and Intents, Activity Lifecycle and Managing State, Activities and Implicit Intents

B.Tech. R20 Regulations

Task: Build and Run Hello World Application on the virtual Device and also test the app on your mobile phone

Module 4:

Android UI components: Text Controls, Buttons, Widgets, Layouts, Containers

Task: Explore all the UI Controls and design a Student Registration Activity

Module 5:

Material Design for Android: Material theme and widgets, Elevation shadows, Cards, Animations, Drawables

Task: Design the Student Registration Activity using Material Design for Android Components

Module 6:

Navigation: Back-button navigation, Hierarchical navigation patterns, Ancestral navigation (Up button), Descendant navigation, Lateral navigation with tabs and swipes

Task: Design a complete Student Management Application using Android and provide effective navigation between various Activities

Module 7:

Connect to the Internet: Security best practices for network operations, Including permissions in the manifest, Performing network operations on a worker thread, Making an HTTP connection, Parsing the results, Managing the network state

Task: Develop an Android Application that stores Student Details into the hosting server and retrieve student details from the server

Module 8:

Messages and Storage: Creating a Snackbar object, Showing the message to the user, instantiate a Toast object, Show the toast, Add Notification to your App, Customize Notifications, App-specific storage, Preferences, Room persistence library

Task: Secure the Student Management Application with proper hints, messages, notifications, and logging

B.Tech. R20 Regulations

Module 9:

GeoLocation: Set up the project and get an API Key, Add Markers on the map, map Styles, Enable location tracking

Task: Add your college location on maps and also provide a location tracking feature in your app

Module 10:

Authentication: Add Firebase to the project, Email Authentication, Phone Authentication, Gmail Authentication

Task: Design and implement an effective student Login System with OTP feature and email authentication using firebase

Module 11:

Hybrid App Development: Hybrid App vs Native App, React-Native, Flutter, Ionic, Xamarin

Task: Design Student Management App using any one of the Hybrid Frameworks or SDKs.

Module 12:

Publish App to Play Store: Add a launcher icon and Application ID, Specify API Level targets and version number, Disable logging and debugging, Generate signed APK for release, Create a Google Developer Account, Run pre-launch reports, Review criteria for publishing, Submit your app for publishing.

Task: Prepare and Publish Your Android Apps in Google Play Store

References:

- 1. Smyth, Neil. Android Studio 4.2 Development Essentials Kotlin Edition: Developing Android Apps Using Android Studio 4.2, Kotlin, and Android Jetpack, Payload Media, Incorporated, 2021.
- 2. Cheng, Fu. Build Mobile Apps with Ionic 4 and Firebase: Hybrid Mobile App Development. Germany, Apress, 2018.
- 3. Derks, Roy, and Boduch, Adam. React and React Native: A Complete Hands-on Guide to Modern Web and Mobile Development with React.js, 3rd Edition. United Kingdom, Packt Publishing, 2020.

Online Learning Resources/Virtual Labs:

https://developer.android.com/

https://material.io/

https://kotlinlang.org/

https://google-developer-training.github.io/android-developer-fundamentals-course-concepts/

https://developers.google.com/

OPEN ELECTIVES

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A01505) BUILDING TECHNOLOGY

(Open Elective-I)

Course Objectives:

- To know different types of buildings, principles and planning of the buildings.
- To identify the termite control measure in buildings, and importance of grouping circulation, lighting and ventilation aspects in buildings.
- To know the different modes of vertical transportation in buildings.
- To know the utilization of prefabricated structural elements in buildings.
- To know the importance of acoustics in planning and designing of buildings.

Course Outcomes (CO):

- Understand the principles in planning and design the buildings
- To get different types of buildings, principles and planning of the buildings
- To know the different methods of termite proofing in buildings.
- Know the different methods of vertical transportation in buildings.
- Know the implementation of prefabricated units in buildings and effect of earthquake on buildings.
- Know the importance of acoustics in planning and designing of buildings.

UNIT I

Overview of the course, basic definitions, buildings-types-components-economy and design-principles of planning of buildings and their importance. Definitions and importance of grouping and circulation-lighting and ventilation-consideration of the above aspects during planning of building.

UNIT II

Termite proofing: Inspection-control measures and precautions-lighting protection of buildingsgeneral principles of design of openings-various types of fire protection measures to be considered while panning a building.

UNIT III

Vertical transportation in a building: Types of vertical transportation-stairs-different forms of stairs-planning of stairs-other modes of vertical transportation —lifts-ramps-escalators.

UNIT IV

Prefabrication systems in residential buildings-walls-openings-cupboards-shelves etc., planning and modules and sizes of components in prefabrication. Planning and designing of residential buildings against the earthquake forces, principles, seismic forces and their effect on buildings.

UNIT V

Acoustics –effect of noise –properties of noise and its measurements, principles of acoustics of building. Sound insulation-importance and measures.

Textbooks:

- 1. Building construction by Varghese, PHI Learning Private Limited 2nd Edition 2015
- 2. Building construction by Punmia.B.C, Jain.A.K and Jain.A.K Laxmi Publications 11th edition 2016

Reference Books:

- 1. National Building Code of India, Bureau of Indian Standards
- 2. Building construction-Technical teachers training institute, Madras, Tata McGraw Hill.
- 3. Building construction by S.P.Arora and S.P.BrndraDhanpat Rai and Sons Publications, New Delh 2014 edition

https://nptel.ac.in/courses/105102206

https://nptel.ac.in/courses/105103206

(20A02505) ELECTRIC VEHICLES

(Open Elective-I)

Course Objectives:

- To get exposed to new technologies of battery electric vehicles, fuel cell electric vehicles
- To get exposed to EV system configuration and parameters
- To know about electro mobility and environmental issues of EVs
- To understand about basic EV propulsion and dynamics
- To understand about fuel cell technologies for EV and HVEs
- To know about basic battery charging and control strategies used in electric vehicles

Course Outcomes:

- Understand and differentiate between conventional and latest trends in Electric Vehicles
- Analyze various EV resources, EV dynamics and Battery charging
- Apply basic concepts of EV to design complete EV system
- Design EV system with various fundamental concepts

UNIT I INTRODUCTION TO EV SYSTEMS AND PARAMETERS

Past, Present and Future EV, EV Concept, EV Technology, State-of-the Art EVs, EV configuration, EV system, Fixed and Variable gearing, single and multiple motor drive, in-wheel drives, EV parameters: Weight, size, force and energy, performance parameters.

UNIT II EV AND ENERGY SOURCES

Electro mobility and the environment, history of Electric power trains, carbon emissions from fuels, green houses and pollutants, comparison of conventional, battery, hybrid and fuel cell electric systems

UNIT III EV PROPULSION AND DYNAMICS

Choice of electric propulsion system, block diagram, concept of EV Motors, single and multi motor configurations, fixed and variable geared transmission, In-wheel motor configuration, classification, Electric motors used in current vehicle applications, Recent EV Motors, Vehicle load factors, vehicle acceleration.

UNIT IV FUEL CELLS

Introduction of fuel cells, basic operation, model, voltage, power and efficiency, power plant system – characteristics, sizing, Example of fuel cell electric vehicle.

Introduction to HEV, brake specific fuel consumption, comparison of series, series-parallel hybrid systems, examples

UNIT V BATTERY CHARGING AND CONTROL

Battery charging: Basic requirements, charger architecture, charger functions, wireless charging, power factor correction.

Control: Introduction, modelling of electromechanical system, feedback controller design approach, PI controllers designing, torque-loop, speed control loop compensation, acceleration of battery electric vehicle

Textbooks:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2005.
- 2. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 2015.

Online Learning Resources:

1. https://onlinecourses.nptel.ac.in/noc22_ee53/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A03505) 3D PRINTING TECHNOLOGY (Open Elective-I)

Course Objectives:

- Familiarize techniques for processing of CAD models for rapid prototyping.
- Explain fundamentals of rapid prototyping techniques.
- Demonstrate appropriate tooling for rapid prototyping process.
- Focus Rapid prototyping techniques for reverse engineering.
- Train Various Pre Processing, Processing and Post Processing errors in RP Processes.

Course Outcomes:

- Use techniques for processing of CAD models for rapid prototyping.
- Understand and apply fundamentals of rapid prototyping techniques.
- Use appropriate tooling for rapid prototyping process.
- Use rapid prototyping techniques for reverse engineering.
- Identify Various Pre Processing, Processing and Post Processing errors in RP processes.

UNIT I Introduction to 3D Printing

Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP.

UNIT II Solid and Liquid Based RP Systems

Working Principle, Materials, Advantages, Limitations and Applicationsof Fusion Deposition Modelling (FDM), Laminated Object Manufacturing (LOM), Stereo lithography (SLA), Direct Light Projection System (DLP) and Solid Ground Curing (SGC).

UNIT III Powder Based & Other RP Systems

Powder Based RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS), Laser Engineered Net Shaping (LENS) and Electron Beam Melting (EBM).

Other RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Three Dimensional Printing (3DP), Ballastic Particle Manufacturing (BPM) and Shape Deposition Manufacturing (SDM).

UNIT IV Rapid Tooling & Reverse Engineering

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development.

UNIT V Errors in 3D Printing and Applications:

Pre-processing, processing and post-processing errors, Part building errors in SLA, SLS, etc.

Software: Need for software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant, Velocity2, VoXim, Solid View, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP. **Applications:** Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse

Engineering, Medical Applications of RP.

Textbooks:

1. Chee Kai Chua and Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific Publications, 2017.

2. Ian Gibson, David W Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2/e, 2010.

Reference Books:

- 1. Frank W.Liou, "Rapid Prototyping & Engineering Applications", CRC Press, Taylor & Francis Group, 2011.
- 2. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley&Sons, 2006.

Online Learning Resources:

- NPTEL Course on Rapid Manufacturing.
- https://nptel.ac.in/courses/112/104/112104265/
- https://www.hubs.com/knowledge-base/introduction-fdm-3d-printing/
- https://slideplayer.com/slide/6927137/
- https://www.mdpi.com/2073-4360/12/6/1334
- https://www.centropiaggio.unipi.it/sites/default/files/course/material/2013-11-29%20-%20FDM.pdf
- https://lecturenotes.in/subject/197
- https://www.cet.edu.in/noticefiles/258_Lecture%20Notes%20on%20RP-ilovepdf-compressed.pdf
- https://www.vssut.ac.in/lecture_notes/lecture1517967201.pdf
- https://www.youtube.com/watch?v=NkC8TNts4B4

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A04507) MATLAB PROGRAMMING FOR ENGINEERS

Course Objectives:

To provide fundamental knowledge of programming language for solving problems.

Course Outcomes: On completion of the course, students will be able to

- Generate arrays and matrices for numerical problems solving.
- Represent data and solution in graphical display.
- Write scripts and functions to easily execute series of tasks in problem solving.
- Use arrays, matrices and functions in Engineering applications
- Design GUI for basic mathematical applications.

UNIT I

Introduction: Basics of MATLAB, MATLAB windows, Advantages of MATLAB, on-line help, file types. MATLAB Basics: Variables and Constants –Vectors and Matrices- Arrays - manipulation-Built-in MATLAB Functions. Creating and printing simple plots, Creating, Saving and Executing a Script File, Creating and Executing a function file. Programming Basics: Data Types-Operators – Hierarchy of operations, Relational and logical operators, if-end structure, if-else-end structure, switch-case statement, for-end loop, while-end loop, break and continue commands.

UNIT II

Scripts and Functions Script Files, Function Files, Debugging methods in MATLAB. Graphics: Basic 2D plots: Printing labels- grid and axes box- Entering text in a box- Axis control-Style options Multiple plots-subplots-specialized 2D plots: stem-, bar, hist, pi, stairs, loglog, semilog,polar,comet 3D plots: Mesh,Contour,Surf,Stem3,ezplot.

UNIT III

Numerical Methods Using MATLAB Numerical Differentiation, Numerical integration- Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, Simpson's 1/3 Rule for Numerical Integration. MATLAB functions for integration. Linear Equations- Linear algebra in MATLAB, solving a linear system, Gauss Elimination, Finding eigen values and eigen vectors, Matrix factorizations, Advanced topics.

UNIT IV

Nonlinear Equations System of Non-linear equations, Solving System of Equations Using MATLAB function fsolve, Interpolation Lagrange Interpolation, Two dimensional Interpolation, Straight line fit using Least Square Method, Curve fitting using built-in functions ployval and polyfit, cubic fit using least square method. Finding roots of a polynomial - roots function, Newton-Raphson Method.

UNIT V

Solution of Ordinary differential Equations (ODEs)-The 4th order Runge-kutta Method, ODE Solvers in MATLAB, Solving First –order equations using ODE23 and ODE45. Structures and Graphical user interface (GUI): Advanced data Objects, how a GUI works, Creating and displaying a GUI. GUI components, Dialog Boxes.

Learning Resources:

- 1. Getting started with MATLAB "A quick introduction for scientist and engineers by Rudra Pratap, Oxford publications.
- 2. Advanced Guide to MATLAB-Practical Examples in Science and Engineering by S.N.Alam, S.Islam, S.K. Patel-I.K. International Publishing House Pvt. Ltd.

- 3. Stephen J. Chapman-"MATLAB Programming for Engineers"- 5th Edition- Cengage Learning- 2015. Getting started with MATLAB (Version 9) The Math works.
- 4. An Introduction to MATLAB® Programming and Numerical Methods for Engineers 1st Edition by Timmy Siauw Alexandre Bayen, Elsevier-18th April 2014.
- 5. https://nptel.ac.in/courses/103106118/2
- 6. https://www.udemy.com/numerical-methods

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A04508) INTRODUCTION TO CONTROL SYSTEMS

Course Objectives:

• To learn the concepts of linear Systems theory and its analysis.

Course Outcomes:

- Understand different system representation, block diagram reduction and Mason's rule.
- Determine Time response analysis of LTI systems and steady state error.
- Plot open loop and closed loop frequency responses of systems
- Understand Stability concept.
- Perform State variable analysis.

UNIT I MATHEMATICAL MODELS OF PHYSICAL SYSTEMS

Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction– Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOT LOCUS TECHNIQUE

Standard test signals – Steady state error & error constants – Time Response of I and II order system – Root locus – Rules for sketching root loci.

UNIT III FREQUENCY RESPONSE ANALYSIS

Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS

Concept of stability – Necessary condition – RH criterion – Relative stability – Nyquist stability criterion – Stability from Bode plot – Relative stability from Nyquist & Bode – Closed loop frequency response.

UNIT V STATE VARIABLE ANALYSIS

Concept of state – State Variable & State Model – State models for linear & continuous time systems – Solution of state & output equation – controllability & observability.

Textbooks:

- 1. Benjamin C. Kuo, Automatic Control Systems, PHI Learning Private Ltd, 2010.
- 2. J. Nagrath and M. Gopal, Control Systems Engineering, Tata McGraw-Hill Education Private Limited, Reprint, 2010.

References:

- 1. Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Pearson Education, Third Impression, 2009.
- 2. S. Palani, Control System Engineering, Tata McGraw-Hill Education Private Limited, First Reprint, 2010.

20A27505) COMPUTER APPLICATIONS IN FOOD TECHNOLOGY (Open Elective-1)

Course Objectives:

- To know different software and applications in food technology.
- To understand the Chemical kinetics in food processing, Microbial distraction in thermal processing of food.
- To acquire knowledge on computer aided manufacturing and control of food machinery, inventory control, process control.

Course Outcomes:

- Students will gain knowledge on software in food technology, data analysis, Chemical kinetics, microbial distortion in thermal process
- Use of linear regression in analyzing sensory data, application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants.

UNIT I

Introduction to various software and their applications in food technology. Application of MS Excel to solve the problems of Food Technology, SPSS and JMP for data analysis, Pro-Engineering for design, Lab VIEW and SCADA for process control.

UNIT II

Chemical kinetics in food processing: Determining rate constant of zero order reaction First order rate constant and half-life of reactions. Determining energy of activation of vitamin degradation during food storage Rates of Enzymes catalyzed reaction. Microbial distraction in thermal processing of food. Determining decimal reduction time from microbial survival data, Thermal resistance factor, Z-values in thermal processing of food. Sampling to ensure that a lot is not contaminated with more than a given percentage Statistical quality control. Probability of occurrence in normal distribution. Using binomial distribution to determine probability of occurrence. Probability of defective items in a sample obtained from large lot

UNIT III

Sensory evaluation of food Statistical descriptors of a population estimated from sensory data obtained from a sample Analysis of variance. One factor, completely randomized design For two factor design without replication. Use of linear regression in analyzing sensory data. Mechanical transport of liquid food. Measuring viscosity of liquid food using a capillary tube viscometer. Solving simultaneous equations in designing multiple effect evaporator while using matrix algebra available in excel.

UNIT IV

Familiarization with the application of computer in some common food industries like, milk plant, bakery units & fruits vegetable plants, stating from the receiving of raw material up to the storage & dispatch of finished product.

UNIT V

Basic Introduction to computer aided manufacturing. Application of computers, instrumentation and control of food machinery, inventory control, process control etc.

Recommended books:

- 1. Computer Applications in Food Technology: Use of Spreadsheets in Graphical, Statistical and Process Analysis by R. Paul Singh, AP.
- 2. Manuals of MS Office.

(20A54501) OPTIMIZATION TECHNIQUES

(Open Elective- I)

Course Objectives:

This course enables the students to classify and formulate real-life problem for modeling as optimization problem, solving and applying for decision making.

Course Outcomes: Student will be able to

- formulate a linear programming problem and solve it by various methods.
- give an optimal solution in assignment jobs, give transportation of items from sources to destinations.
- identify strategies in a game for optimal profit.
- implement project planning.

UNIT I

Introduction to operational research-Linear programming problems (LPP)-Graphical method-Simplex method-Big M Method-Dual simplex method.

UNIT II

Transportation problems- assignment problems-Game theory.

UNIT III

CPM and PERT –Network diagram-Events and activities-Project Planning-Reducing critical events and activities-Critical path calculations.

UNIT IV

Sequencing Problems-Replacement problems-Capital equipment- Discounting costs- Group replacement.

UNIT V

Inventory models-various costs- Deterministic inventory models-Economic lot size-Stochastic

inventory models- Single period inventory models with shortage cost.

Textbooks:

- 1. Operations Research, S.D. Sharma.
- 2. Operations Research, An Introduction, Hamdy A. Taha, Pearson publishers.
- 3. Operations Research, Nita H Shah, Ravi M Gor, Hardik Soni, PHI publishers

Reference Books:

- 1. Problems on Operations Research, Er. Prem kumargupta, Dr.D.S. Hira, Chand publishers
- 2. Operations Research, CB Gupta, PK Dwivedi, Sunil kumaryadav

Online Learning Resources:

https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L2slides.pdf

https://slideplayer.com/slide/7790901/

https://www.ime.unicamp.br/~andreani/MS515/capitulo12.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A56501) MATERIALS CHARACTERIZATION TECHNIQUES (Open Elective- I)

Course Objectives:

- To provide an exposure to different characterization techniques.
- To enlighten the basic principles and analysis of different spectroscopic techniques.
- To explain the basic principle of Scanning electron microscope along with its limitations and applications.
- To identify the Resolving power and Magnification of Transmission electron microscope and its applications.
- To educate the uses of advanced electric and magnetic instruments for characterization.

Course Outcomes: At the end of the course the student will be able

- To explain the structural analysis by X-ray diffraction.
- To understand the morphology of different materials using SEM and TEM.
- To recognize basic principles of various spectroscopic techniques.
- To study the electric and magnetic properties of the materials.
- To make out which technique can be used to analyse a material

UNIT I

Structure analysis by Powder X-Ray Diffraction: Introduction, Bragg's law of diffraction, Intensity of Diffracted beams, Factors affecting Diffraction, Intensities, Structure of polycrystalline Aggregates, Determination of crystal structure, Crystallite size by Scherrer and Williamson-Hall (W-H) Methods, Small angle X-ray scattering (SAXS) (in brief).

UNIT II

Microscopy technique -1 –Scanning Electron Microscopy (SEM)

Introduction, Principle, Construction and working principle of Scanning Electron Microscopy, Specimen preparation, Different types of modes used (Secondary Electron and Backscatter Electron), Advantages, limitations and applications of SEM.

UNIT III

Microscopy Technique -2 - Transmission Electron Microscopy (TEM): Construction and Working principle, Resolving power and Magnification, Bright and dark fields, Diffraction and image formation, Specimen preparation, Selected Area Diffraction, Applications of Transmission Electron Microscopy, Difference between SEM and TEM, Advantage and Limitations of Transmission Electron Microscopy.

UNIT IV

Spectroscopy techniques – Principle, Experimental arrangement, Analysis and advantages of the spectroscopic techniques – (i) UV-Visible spectroscopy (ii) Raman Spectroscopy, (iii) Fourier Transform infrared (FTIR) spectroscopy, (iv) X-ray photoelectron spectroscopy (XPS).

UNIT V

Electrical & Magnetic Characterization techniques: Electrical Properties analysis techniques (DC conductivity, AC conductivity) Activation Energy, Effect of Magnetic field on the electrical properties (Hall Effect). Magnetization measurement by induction method, Vibrating sample Magnetometer (VSM) and SQUID.

Textbooks:

- 1. Material Characterization: Introduction to Microscopic and Spectroscopic Methods -Yang Leng John Wiley & Sons (Asia) Pvt. Ltd. 2008
- 2. Handbook of Materials Characterization -by Sharma S. K. Springer

References

- 1. Fundamentals of Molecular Spectroscopy IV Ed. Colin Neville Banwell and Elaine M. McCash, Tata McGraw-Hill, 2008.
- 2. Elements of X-ray diffraction Bernard Dennis Cullity& Stuart R Stocks, Prentice Hall, 2001
- 3. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods-Yang Leng- John Wiley
- & Sons4. Characterization of Materials 2nd Edition, 3 Volumes-Kaufmann E N -John Wiley (Bp)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech III-I Sem L T P C 3 0 0 3

(20A51501) CHEMISTRY OF ENERGY MATERIALS (Open Elective- I)

Course Objectives:

- To make the student understand basic electrochemical principles such as standard electrode potentials, emf and applications of electrochemical principles in the design of batteries.
- To understand the basic concepts of processing and limitations of fossil fuels and Fuel cells & their applications.
- To impart knowledge to the students about fundamental concepts of hydrogen storage in different materials and liquification method
- Necessasity of harnessing alternate energy resources such as solar energy and its basic concepts.
- To understand and apply the basics of calculations related to material and energy flow in the processes.

Course Outcomes:

- Ability to perform simultaneous material and energy balances.
- Student learn about various electrochemical and energy systems
- Knowledge of solid, liquid and gaseous fuels
- To know the energy demand of world, nation and available resources to fulfill the demand
- To know about the conventional energy resources and their effective utilization
- To acquire the knowledge of modern energy conversion technologies
- To be able to understand and perform the various characterization techniques of fuels
- To be able to identify available nonconventional (renewable) energy resources and techniques to utilize them effectively

UNIT I: Electrochemical Systems: Galvanic cell, standard electrode potential, application of EMF, electrical double layer, dipole moments, polarization, Batteries-Lead-acid and Lithium ion batteries.

UNIT II: Fuel Cells: Fuel cell working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency, Basic design of fuel cell,.

UNIT III: Hydrogen Storage: Hydrogen Storage, Chemical and Physical methods of hydrogen storage, Hydrogen Storage in metal hydrides, metal organic frame works (MOF), Carbon structures, metal oxide porous structures, hydrogel storage by high pressure methods. Liquifaction method.

UNIT IV:Solar Energy: Solar energy introduction and prospects, photo voltaic (PV) technology, concentrated solar power (CSP), Solar Fuels, Solar cells.

UNIT V: Photo and Photo electrochemical Conversions: Photochemical cells and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions.

References:

- 1. Physical chemistry by Ira N. Levine
- 2. Essentials of Physical Chemistry, Bahl and Bahl and Tuli.
- 3. Inorganic Chemistry, Silver and Atkins
- 4. Fuel Cell Hand Book 7th Edition, by US Department of Energy (EG&G technical services and corporation)
- 5. Hand book of solar energy and applications by Arvind Tiwari and Shyam.
- 6. Solar energy fundamental, technology and systems by Klaus Jagar et.al.
- 7. Hydrogen storage by Levine Klebonoff

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A01605) ENVIRONMENTAL ECONOMICS

(Open Elective Course - II)

Course Objectives:

- To impart knowledge on sustainable development and economics of energy
- To teach regarding environmental degradation and economic analysis of degradation
- To inculcate the knowledge of economics of pollution and their management
- To demonstrate the understanding of cost benefit analysis of environmental resources
- To make the students to understand principles of economics of biodiversity

Course Outcomes:

After the completion of the course, the students will be able to know

- The information on sustainable development and economics of energy
- The information regarding environmental degradation and economic analysis of degradation
- The identification of economics of pollution and their management
- The cost benefit analysis of environmental resources
- The principles of economics of biodiversity

UNIT I

Sustainable Development: Introduction to sustainable development - Economy-Environment interlinkages - Meaning of sustainable development - Limits to growth and the environmental Kuznets curve - The sustainability debate - Issues of energy and the economics of energy - Nonrenewable energy, scarcity, optimal resources, backstop technology, property research, externalities, and the conversion of uncertainty.

UNIT II

Environmental Degradation: Economic significance and causes of environmental degradation - The concepts of policy failure, externality and market failure - Economic analysis of environmental degradation - Equi -marginal principle.

UNIT - III

Economics of Pollution: Economics of Pollution - Economics of optimal pollution, regulation, monitoring and enforcement - Managing pollution using existing markets: Bargaining solutions - Managing pollution through market intervention: Taxes, subsidies and permits.

UNIT IV

Cost – Benefit Analysis: Economic value of environmental resources and environmental damage - Concept of Total Economic Value - Alternative approaches to valuation – Cost-benefit analysis and discounting.

UNIT V

Economics of biodiversity: Economics of biodiversity conservation - Valuing individual species and diversity of species -Policy responses at national and international levels. Economics of Climate Change – stern Report

Textbooks:

- 1. An Introduction to Environmental Economics by N. Hanley, J. Shogren and B. White Oxford University Press.(2001)
- 2. Blueprint for a Green Economy by D.W. Pearce, A. Markandya and E.B. Barbier Earthscan, London.(1989)

Reference Books:

- 1. Environmental Economics: An Elementary Introduction by R.K. Turner, D.W. Pearce and I. Bateman Harvester Wheatsheaft, London. (1994),
- 2. Economics of Natural Resources and the Environment by D.W. Pearce and R.K. Turner Harvester Wheat sheaf, London. (1990),
- 3. Environmental and Resource Economics: An Introduction by Michael S. Common and Michael Stuart 2ndEdition, Harlow: Longman.(1996),
- 4. Natural Resource and Environmental Economics by Roger Perman, Michael Common, Yue Ma and James Mc Gilvray 3rdEdition, Pearson Education.(2003),

Online Learning Resources:

https://nptel.ac.in/courses/109107171

(20A02605) SMART ELECTRIC GRID (Open Elective Course-II)

Course Objectives:

- Understand recent trends in grids, smart grid architecture and technologies
- Analyze smart substations
- Apply the concepts to design smart transmission systems
- Apply the concepts to design smart distribution systems

Course Outcomes:

- Understand trends in Smart grids, needs and roles of Smart substations
- Design and Analyze Smart Transmission systems
- Design and Analyze Smart Distribution systems
- Analyze SCADA and DSCADA systems in practical working environment

UNIT I INTRODUCTION TO SMART GRID

Working definitions of Smart Grid and Associated Concepts – Smart Grid Functions – Traditional Power Grid and Smart Grid – New Technologies for Smart Grid – Advantages – Indian Smart Grid – Key Challenges for Smart Grid

UNIT II SMART GRID TECHNOLOGIES

Characteristics of Smart grid, Micro grids, Definitions, Drives, benefits, types of Micro grid, building blocks, Renewable energy resources, needs in smart grid, integration impact, integration standards, Load frequency control, reactive power control, case studies and test beds

UNIT III SMART SUBSTATIONS

Protection, Monitoring and control devices, sensors, SCADA, Master stations, Remote terminal unit, interoperability and IEC 61850, Process level, Bay level, Station level, Benefits, role of substations in smart grid, Volt/VAR control equipment inside substation

UNIT IV SMART TRANSMISSION SYSTEMS

Energy Management systems, History, current technology, EMS for the smart grid, Synchro Phasor Measurement Units (PMUs), Wide Area Monitoring Systems (WAMS), protection & Control (WAMPC), needs in smart grid, Role of WAMPC smart grid, Drivers and benefits, Role of transmission systems in smart grid

UNIT V SMART DISTRIBUTION SYSTEMS

DMS, DSCADA, trends in DSCADA and control, current and advanced DMSs, Voltage fluctuations, effect of voltage on customer load, Drivers, objectives and benefits, voltage-VAR control, VAR control equipment on distribution feeders, implementation and optimization, FDIR - Fault Detection Isolation and Service restoration (FDIR), faults, objectives and benefits, equipment, implementation

Textbooks:

- 1. Stuart Borlase, Smart Grids Infrastructure, Technology and Solutions, CRC Press, 1e, 2013
- 2. Gil Masters, Renewable and Efficient Electric Power System, Wiley-IEEE Press, 2e, 2013.

Reference Books:

- 1. A.G. Phadke and J.S. Thorp, Synchronized Phasor Measurements and their Applications, Springer Edition, 2e, 2017.
- 2. T. Ackermann, Wind Power in Power Systems, Hoboken, NJ, USA, John Wiley, 2e, 2012.

Online Learning Resources:

1. https://onlinecourses.nptel.ac.in/noc22_ee82/preview

(20A03605c) INTRODCUTION TO ROBOTICS (Open Elective-II)

Course Objectives:

- Learn the fundamental concepts of industrial robotic technology.
- Apply the basic mathematics to calculate kinematic and dynamic forces in robot manipulator.
- Understand the robot controlling and programming methods.
- Describe concept of robot vision system

Course Outcomes:

After completing the course, the student will be able to,

- Explain fundamentals of Robots
- Apply kinematics and differential motions and velocities
- Demonstrate control of manipulators
- Understand robot vision
- Develop robot cell design and programming

UNIT I Fundamentals of Robots

Introduction, definition, classification and history of robotics, robot characteristics and precision of motion, advantages, disadvantages and applications of robots. Introduction to matrix representation of a point in a space a vector in space, a frame in space, Homogeneous transformation matrices, representation of a pure translation, pure rotation about an axis.

UNIT II Kinematics, Differential motions and velocities of robot

Kinematics of robot: Forward and inverse kinematics of robots- forward and inverse kinematic equations for position and orientation, Denavit-Hartenberg(D-H) representation of forward kinematic

equations of robots, the inverse kinematic of robots, degeneracy and dexterity, simple problems with D-H representation.

Differential motions and Velocities: Introduction, differential relationship, Jacobian, differential motions of a frame-translations, rotation, rotating about a general axis, differential transformations of a frame. Differential changes between frames, differential motions of a robot and its hand frame, calculation of Jacobian, relation between Jacobian and the differential operator, Inverse Jacobian.

UNIT III Control of Manipulators

Open- and close-loop control, the manipulator control problem, linear control schemes, characteristics of second-order linear systems, linear second-order SISO model of a manipulator joint, joint actuators, partitioned PD control scheme, PID control Scheme, computer Torque control, force control of robotic manipulators, description of force-control tasks, force control strategies, hybrid position/force control, impedance force/torque control.

UNIT IV Robot Vision

Introduction, architecture of robotic vision system, image processing, image acquisition camera, image enhancement, image segmentation, imaging transformation, Camera transformation and calibrations, industrial applications of robot vision.

UNIT V Robot Cell Design and Programming

Robot cell layouts-Robot centred cell, In-line robot cell, considerations in work cell design, work cell control, interlocks, error detection, work cell controller. methods of robot programming, WAIT, SIGNAL, and DELAY commands, Robotic languages, VAL system.

Textbooks:

- 1. Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, Nicholas G.Odrey, Industrial Robotics Mc Graw Hill, 1986.
- 2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

References:

- 1. Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley- Interscience, 1986.
- **3.** Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.

Online Learning Resources:

https://nptel.ac.in/courses/108105088

https://nptel.ac.in/courses/108105063

https://nptel.ac.in/courses/108105062

https://nptel.ac.in/courses/112104288

(20A04605) SIGNAL PROCESSING (Open Elective Course –II)

Course objectives:

- Understand, represent and classify continuous time and discrete time signals and systems, together with the representation of LTI systems.
- Ability to represent continuous time signals (both periodic and non-periodic) in the time domain, sdomain and the frequency domain
- Understand the properties of analog filters, and have the ability to design Butterworth filters
- Understand and apply sampling theorem and convert a signal from continuous time to discrete time or from discrete time to continuous time (without loss of information)
- Able to represent the discrete time signal in the frequency domain
- Able to design FIR and IIR filters to meet given specifications

Course Outcomes:

- Understand and explain continuous time and discrete time signals and systems, in time and frequency domain
- Apply the concepts of signals and systems to obtain the desired parameter/ representation
- Analyse the given system and classify the system/arrive at a suitable conclusion
- Design analog/digital filters to meet given specifications
- Design and implement the analog filter using components/ suitable simulation tools
- Design and implement the digital filter using suitable simulation tools, and record the input and output of the filter for the given audio signal

UNIT I

Signal Definition, Signal Classification, System definition, System classification, for both continuous time and discrete time. Definition of LTI systems

UNIT II

Introduction to Fourier Transform, Fourier Series, Relating the Laplace Transform to Fourier Transform, Frequency response of continuous time systems

UNIT III

Frequency response of ideal analog filters, Salient features of Butterworth filters Design and implementation of Analog Butterworth filters to meet given specifications

UNIT IV

Sampling Theorem- Statement and proof, converting the analog signal to a digital signal. Practical sampling. The Discrete Fourier Transform, Properties of DFT. Comparing the frequency response of analog and digital systems.

UNIT V

Definition of FIR and IIR filters. Frequency response of ideal digital filters

Transforming the Analog Butterworth filter to the Digital IIR Filter using suitable mapping techniques, to meet given specifications. Design of FIR Filters using the Window technique, and the frequency sampling technique to meet given specifications Comparing the designed filter with the desired filter frequency response

Textbooks:

1. 'Signals and Systems', by Simon Haykin and Barry Van Veen, Wiley.

References:

- 1. 'Theory and Application of Digital Signal Processing', Rabiner and Gold
- 2. 'Signals and Systems', Schaum's Outline series
- 3. 'Digital Signal Processing', Schaum's Outline series

(20A04606) BASIC VLSI DESIGN

Course Objectives:

- Understand the fundamental aspects of circuits in silicon
- Relate to VLSI design processes and design rules

Course Outcomes:

- Identify the CMOS layout levels, and the design layers used in the process sequence.
- Describe the general steps required for processing of CMOS integrated circuits.
- Design static CMOS combinational and sequential logic at the transistor level.
- Demonstrate different logic styles such as complementary CMOS logic, pass-transistor Logic, dynamic logic, etc.
- Interpret the need for testability and testing methods in VLSI.

UNIT I

Moore's law, speed power performance, nMOS fabrication, CMOS fabrication: n-well, pwell processes, BiCMOS, Comparison of bipolar and CMOS. Basic Electrical Properties of MOS And BiCMOS Circuits: Drain to source current versus voltage characteristics, threshold voltage, transconductance.

UNIT II

Basic Electrical Properties of MOS And BiCMOS Circuits: nMOS inverter, Determination of pull up to pull down ratio: nMOS inverter driven through one or more pass transistors, alternative forms of pull up, CMOS inverter, BiCMOS inverters, latch up. Basic Circuit Concepts: Sheet resistance, area capacitance calculation, Delay unit, inverter delay, estimation of CMOS inverter delay, super buffers, BiCMOS drivers.

UNIT III

MOS and BiCMOS Circuit Design Processes: MOS layers, stick diagrams, nMOS design style, CMOS design style Design rules and layout & Scaling of MOS Circuits: λ - based design rules, scaling factors for device parameters

UNIT IV

Subsystem Design and Layout-1: Switch logic pass transistor, Gate logic inverter, NAND gates, NOR gates, pseudo nMOS, Dynamic CMOS Examples of structured design: Parity generator, Bus arbitration, multiplexers, logic function block, code converter.

UNIT V

Subsystem Design and Layout-2: Clocked sequential circuits, dynamic shift registers, bus lines, General considerations, 4-bit arithmetic processes, 4-bit shifter, RegularityDefinition & Computation Practical aspects and testability: Some thoughts of performance, optimization and CAD tools for design and simulation.

Textbooks:

1. "Basic VLSI Design", Douglas A Pucknell, Kamran Eshraghian, 3 rd Edition, Prentice Hall of India publication, 2005.

References:

- 1. "CMOS Digital Integrated Circuits, Analysis And Design", Sung Mo (Steve) Kang, Yusuf Leblebici, Tata McGraw Hill, 3 rd Edition, 2003.
- 2. "VLSI Technology", S.M. Sze, 2nd edition, Tata McGraw Hill, 2003

(20A27605) FOOD REFRIGERATION AND COLD CHAIN MANAGEMENT OPEN ELECTIVE II

Course Objectives:

- To know the equipment available to store perishable items for a long time
- To understand to increase the storage life of food items

Course Outcomes

By the end of the course, the students will

- Understand various principles and theories involved in refrigeration systems
- Understand the different equipment useful to store the food items for a long period.
- Understand how to increase the storage life of food items

UNIT I

Principles of refrigeration: Definition, background with second law of thermodynamics, unit of refrigerating capacity, coefficient of performance; Production of low temperatures: Expansion of a liquid with flashing, reversible/ irreversible adiabatic expansion of a gas/ real gas, thermoelectric cooling, adiabatic demagnetization; Air refrigerators working on reverse Carnot cycle: Carnot cycle, reversed Carnot cycle, selection of operating temperatures;

UNIT II

Air refrigerators working on Bell Coleman cycle: Reversed Brayton or Joule or Bell Coleman cycle, analysis of gas cycle, polytropic and multistage compression; Vapour refrigeration: Vapor as a refrigerant in reversed Carnot cycle with p-V and T-s diagrams, limitations of reversed Carnot cycle; Vapour compression system: Modifications in reverse Carnot cycle with vapour as a refrigerant (dry vs wet compression, throttling vs isentropic expansion), representation of vapor compression cycle on pressure- enthalpy diagram, super heating, sub cooling;

UNIT III

Liquid-vapour regenerative heat exchanger for vapour compression system, effect of suction vapour super heat and liquid sub cooling, actual vapour compression cycle; Vapour-absorption refrigeration system: Process, calculations, maximum coefficient of performance of a heat operated refrigerating machine, Common refrigerants and their properties: classification, nomenclature, desirable properties of refrigerants- physical, chemical, safety, thermodynamic and economical; Azeotropes; Components of vapour compression refrigeration system, evaporator, compressor, condenser and expansion valve;

UNIT IV

Ice manufacture, principles and systems of ice production, Treatment of water for making ice, brines, freezing tanks, ice cans, air agitation, quality of ice; Cold storage: Cold store, design of cold storage for different categories of food resources, size and shape, construction and material, insulation, vapour barriers, floors, frost-heave, interior finish and fitting, evaporators, automated cold stores, security of operations; Refrigerated transport: Handling and distribution, cold chain, refrigerated product handling, order picking, refrigerated vans, refrigerated display;

UNIT V

Air-conditioning: Meaning, factors affecting comfort air-conditioning, classification, sensible heat factor, industrial air-conditioning, problems on sensible heat factor; Winter/summer/year round air-conditioning, unitary air-conditioning systems, central air-conditioning, physiological principles in air-conditioning, air distribution and duct design methods; design of complete air-conditioning systems; humidifiers and dehumidifiers; Cooling load calculations: Load sources, product cooling, conducted heat, convicted heat, internal heat sources, heat of respiration, peak load; etc.

Textbooks:

1. Arora, C. P. "Refrigeration and Air Conditioning". Tata MC Graw Hill Publishing Co.Ltd., New Delhi. 1993.

References:

1. Adithan, M. and Laroiya, S. C. "Practical Refrigeration and Air Conditioning". Wiley Estern Ltd., New Delhi 1991

(20A54701) WAVELET TRANSFORMS AND ITS APPLICATIONS

(Open Elective-II)

Course Objectives:

This course provides the students to understand Wavelet transforms and its applications.

Course Outcomes:

- Understand wavelets and wavelet expansion systems.
- Illustrate the multi resolution analysis ad scaling functions.
- Form fine scale to coarse scale analysis.
- Find the lattices and lifting.
- Perform numerical complexity of discrete wavelet transforms.
- Find the frames and tight frames using fourier series.

UNIT I Wavelets

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems - Haar Scaling Functions and Wavelets - effectiveness of Wavelet Analysis - The Discrete Wavelet Transform the Discrete-Time and Continuous Wavelet Transforms.

UNIT II A Multiresolution Formulation of Wavelet Systems

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

UNIT III Filter Banks and the Discrete Wavelet Transform

Analysis - From Fine Scale to Coarse Scale- Filtering and Down-Sampling or Decimating -Synthesis - From Coarse Scale to Fine Scale -Filtering and Up-Sampling or Stretching - Input Coefficients - Lattices and Lifting - -Different Points of View.

UNIT IV Time-Frequency and Complexity

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform-Numerical Complexity of the Discrete Wavelet Transform.

UNIT V Bases and Matrix Examples

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example - Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight Frame Example.

Textbooks:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999).

Reference Books:

1. Raghuveer Rao, "Wavelet Transforms", Pearson Education, Asia.

Online Learning Resources:

https://www.slideshare.net/RajEndiran1/introduction-to-wavelet-transform-51504915

(20A56701) PHYSICS OF ELECTRONIC MATERIALS AND DEVICES (Open Elective-II)

Course Objectives:

- To impart the fundamental knowledge on various materials, their properties and applications.
- To provide insight into various semiconducting materials, and their properties.
- To enlighten the characteristic behavior of various semiconductor devices.
- To provide the basics of dielectric and piezoelectric materials and their properties.
- To explain different categories of magnetic materials, mechanism and their advanced applications.

Course Outcome: At the end of the course the student will be able

- To understand the fundamentals of various materials.
- To exploit the physics of semiconducting materials
- To familiarize with the working principles of semiconductor-based devices.
- To understand the behaviour of dielectric and piezoelectric materials.
- To identify the magnetic materials and their advanced applications.

UNIT I Fundamentals of Materials Science

Introduction, Phase rule, Phase Diagram, Elementary idea of Nucleation and Growth, Methods of crystal growth. Basic idea of point, line and planar defects. Concept of thin films, preparation of thin films, Deposition of thin film using sputtering methods (RT and glow discharge).

UNIT II Semiconductors

Introduction, charge carriers in semiconductors, effective mass, Diffusion and drift, Diffusion and recombination, Diffusion length. The Fermi level & Fermi-Dirac distribution, Electron and Hole in quantum well, Change of electron-hole concentration- Qualitative analysis, Temperature dependency of carrier concentration, Conductivity and mobility, Effects of temperature and doping on mobility, High field effects.

UNIT III Physics of Semiconductor devices

Introduction, Band structure, PN junctions and their typical characteristics under equilibrium and under bias, Construction and working principles of: Light emitting diodes, Heterojunctions, Transistors, FET and MOSFETs.

UNIT IV Dielectric Materials and their applications:

Introduction, Dielectric properties, Electronic polarizability and susceptibility, Dielectric constant and frequency dependence of polarization, Dielectric strength and dielectric loss, Piezoelectric properties.

UNIT V Magnetic Materials and their applications

Introduction, Magnetism & various contributions to para and dia magnetism, Ferro and Ferri magnetism and ferrites, Concepts of Spin waves and Magnons, Anti-ferromagnetism, Domains and domain walls, Coercive force, Hysteresis, Nano-magnetism, Super-paramagnetism — Properties and applications.

Textbooks

- 1. Principles of Electronic Materials and Devices- S.O. Kasap, McGraw-Hill Education (India) Pvt. Ltd., 3rd edition, 2007.
- 2. Electronic Components and Materials- Grover and Jamwal, Dhanpat Rai and Co.

Reference Books:

- 1. Solid State Electronic Devices -B.G. Streetman and S. Banerjee, PHI Learning, 6th edition
- 2. Electronic Materials Science- Eugene A. Irene, , Wiley, 2005
- 3. An Introduction to Electronic Materials for Engineers-Wei Gao, Zhengwei Li, Nigel Sammes, World Scientific Publishing Co. Pvt. Ltd., , 2nd Edition, 2011
- 4. A First Course In Material Science- by Raghvan, McGraw Hill Pub.
- 5. The Science and Engineering of materials- Donald R.Askeland, Chapman& Hall Pub.

NPTEL courses links

https://nptel.ac.in/courses/113/106/113106062/

https://onlinecourses.nptel.ac.in/noc20_mm02/preview, https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-mm07

(20A51702) CHEMISTRY OF NANOMATERIALS AND APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To understand synthetic principles of Nanomaterials by various methods
- To characterize the synthetic nanomaterials by various instrumental methods
- To enumerate the applications of nanomaterials in engineering

Course Outcomes:

- Understand the state of art synthesis of nano materials
- Characterize nano materials using ion beam, scanning probe methodologies, position sensitive atom probe and spectroscopic ellipsometry.
- Analyze nanoscale structure in metals, polymers and ceramics
- Analyze structure-property relationship in coarser scale structures
- Understand structures of carbon nano tubes

UNIT I

Introduction: Scope of nanoscience and nanotecnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials.

Synthetic Methods: Bottom-Up approach: Sol-gel synthesis, microemulsions or reverse micelles, co-precipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

UNIT II

Top-Down approach: Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling.

UNIT III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination.

UNIT IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nanoshells, self- assembled monolayers, and monolayer protected metal nanoparticles, nanocrystalline materials, magnetic nanoparticles and important properties in relation to nanomagnetic materials, thermoelectric materials, non-linear optical materials, liquid crystals.

UNIT V

Engineering Applications of Nanomaterials

Textbooks:

- 1. NANO: The Essentials: T Pradeep, MaGraw-Hill, 2007.
- **2.** Textbook of Nanoscience and nanotechnology: B S Murty, P Shankar, BaldevRai, BB Rath and James Murday, Univ. Press, 2012.

References:

- 1. Concepts of Nanochemistry; Ludovico Cademrtiri and Geoffrey A. Ozin& Geoffrey A. Ozin, Wiley-VCH, 2011.
- **2.** Nanostructures & Nanomaterials; Synthesis, Properties & Applications: Guozhong Cao, Imperial College Press, 2007.
- 3. Nanomaterials Chemistry, C. N. R. Rao, Achim Muller, K.Cheetham, Wiley-VCH, 2007.

(20A01704) COST EFFECTIVE HOUSING TECHNIQUES

(Open Elective Course - III)

Course Objectives:

- To understand the requirements of structural safety for future construction.
- To know about the housing scenario, housing financial systems land use and physical
- planning for housing and housing the urban poor
- To know the traditional practices of rural housing
- To know the different innovative cost-effective construction techniques
- To know the alternative building materials for low-cost housing.

Course Outcomes:

- To know the repair and restore action of earthquake damaged non engineered buildings and ability to understand the requirements of structural safety for future construction
- To know about the housing scenario, housing financial systems land use and physical planning for housing and housing the urban poor
- Apply the traditional practices of rural housing
- Understand the different innovative cost-effective construction techniques
- Suggest the alternative building materials for low-cost housing

UNIT I

- a) Housing Scenario: Introducing Status of urban housing Status of Rural Housing
- b) **Housing Finance**: Introducing Existing finance system in India Government role as facilitator Status at Rural Housing Finance Impedimently in housing finance and related issues
- c) Land use and physical planning for housing: Introduction Planning of urban land Urban land ceiling and regulation act Efficiency of building bye lass Residential Densities
- d) **Housing the urban poor :**Introduction Living conditions in slums Approaches and strategies for housing urban poor

UNIT II

Development and adoption of low cost housing technology

Introduction - Adoption of innovative cost effective construction techniques - Adoption of precast elements in partial prefatroices - Adopting of total prefactcation of mass housing in India- General remarks on pre cast rooting/flooring systems -Economical wall system - Single Brick thick loading bearing wall - 19cm thick load bearing masonry walls - Half brick thick load bearing wall - Fly-ash gypsum thick for masonry - Stone Block masonry - Adoption of precast R.C. plank and join system for roof/floor in the building

UNIT III

Alternative building materials for low cost housing

Introduction - Substitute for scarce materials - Ferro-cement - Gypsum boards - Timber substitutions - Industrial wastes - Agricultural wastes - alternative building maintenance

Low cost Infrastructure services:

Introduce - Present status - Technological options - Low cost sanitation - Domestic wall - Water supply, energy

UNIT IV

Rural Housing: Introduction traditional practice of rural housing continuous - Mud Housing technology Mud roofs - Characteristics of mud - Fire treatment for thatch roof - Soil stabilization - Rural Housing programs

UNIT V

Housing in Disaster prone areas:

Introduction – Earthquake - Damages to houses - Traditional prone areas - Type of Damages and Railways of non-engineered buildings - Repair and restore action of earthquake Damaged non-engineered buildings recommendations for future constructions. Requirement's of structural safety of thin precast roofing units against Earthquake forces Status of R& D in earthquake strengthening measures - Floods, cyclone, future safety

Textbooks:

- 1. Building materials for low income houses International council for building research studies and documentation.
- 2. Hand book of low cost housing by A.K.Lal Newage international publishers.
- 3. Low cost Housing G.C. Mathur by South Asia Books

Reference Books:

- 1. Properties of concrete Neville A.m. Pitman Publishing Limited, London.
- 2. Light weight concrete, Academic Kiado, Rudhai.G Publishing home of Hungarian Academy of Sciences 1963.
- 3. Modern trends in housing in developing countries A.G. Madhava Rao, D.S. Rama chandra Murthy &G.Annamalai. E. & F. N. Spon Publishers

Online Learning I	Resources:
-------------------	------------

https://nptel.ac.in/courses/124107001

(20A02704) IoT APPLICATIONS IN ELECTRICAL ENGINEERING

(Open Elective Course – III)

Course Objectives:

- Understand basics of Internet of Things and Micro Electro Mechanical Systems (MEMS) fundamentals in design and fabrication process
- Analyze motion less and motion detectors in IoT applications
- Understand about Analyze applications of IoT in smart grid
- Apply the concept of Internet of Energy for various applications

Course Outcomes:

- Understand the concept of IoT in Electrical Engineering
- Analyze various types of motionless sensors and various types of motion detectors
- Apply various applications of IoT in smart grid
- Design future working environment with Energy internet

UNIT I SENSORS

Definitions, Terminology, Classification, Temperature sensors, Thermoresistive, Resistance, temperature detectors, Silicon resistive thermistors, Semiconductor, Piezoelectric, Humidity and moisture sensors. Capacitive, Electrical conductivity, Thermal conductivity, time domain reflectometer, Pressure and Force sensors: Piezoresistive, Capacitive, force, strain and tactile sensors, Strain gauge, Piezoelectric

UNIT II OCCUPANCY AND MOTION DETECTORS

Capacitive occupancy, Inductive and magnetic, potentiometric - Position, displacement and level sensors, Potentiometric, Capacitive, Inductive, magnetic velocity and acceleration sensors, Capacitive, Piezoresistive, piezoelectric cables, Flow sensors, Electromagnetic, Acoustic sensors - Resistive microphones, Piezoelectric, Photo resistors

UNIT III MEMS

Basic concepts of MEMS design, Beam/diaphragm mechanics, electrostatic actuation and fabrication, Process design of MEMS based sensors and actuators, Touch sensor, Pressure sensor, RF MEMS switches, Electric and Magnetic field sensors

UNIT IV IoT FOR SMART GRID

Driving factors, Generation level, Transmission level, Distribution level, Applications, Metering and monitoring applications, Standardization and interoperability, Smart home

UNIT V INTERNET of ENERGY (IoE)

Concept of Internet of Energy, Evaluation of IoE concept, Vision and motivation of IoE, Architecture, Energy routines, information sensing and processing issues, Energy internet as smart grid

Textbooks:

- 1. Jon S. Wilson, Sensor Technology Hand book, Newnes Publisher, 2004
- 2. Tai Ran Hsu, MEMS and Microsystems: Design and manufacture, 1st Edition, Mc Grawhill Education, 2017
- 3. Ersan Kabalci and Yasin Kabalci, From Smart grid to Internet of Energy, 1st Edition, Academic Press, 2019

Reference Books:

- 1. Raj Kumar Buyya and Amir Vahid Dastjerdi, Internet of Things: Principles and Paradigms, Kindle Edition, Morgan Kaufmann Publisher, 2016
- 2. Yen Kheng Tan and Mark Wong, Energy Harvesting Systems for IoT Applications:

- Generation, Storage and Power Management, 1st Edition, CRC Press, 2019
- 3. RMD Sundaram Shriram, K. Vasudevan and Abhishek S. Nagarajan, Internet of Things, Wiley, 2019

Online Learning Resources:

- 1.https://onlinecourses.nptel.ac.in/noc22 cs96/preview
- 2. https://nptel.ac.in/courses/108108123
- 3. https://nptel.ac.in/courses/108108179

(20A03704) PRODUCT DESIGN AND DEVELOPMENT (Open Elective-III)

Course Objectives:

- To Design products creatively while applying engineering design principles.
- To Apply principles of human factors, ethics and environmental factors in product design.
- To Work in groups or individually in their pursuit of innovative product design.
- To implement value design for optimum product cost.

Course Outcomes: After successful completion of the course, the student will be able to

- Apply knowledge of basic science and engineering fundamentals
- Undertake problem identification, formulation and solution
- Understanding of the principles of sustainable design and development
- Understanding of professional and ethical responsibilities and commitment to them

UNIT I Product Development Process

General problem-solving process - Flow of Work during the process of designing - Activity Planning Timing and scheduling, Planning Project and Product Costs - Effective Organization Structures - Interdisciplinary Cooperation, Leadership and Team behaviour.

UNIT II Task Clarification

Importance of Task Clarification - Setting up a requirements list - Contents, Format, Identifying the requirements, refining and extending the requirements, Compiling the requirements list, Examples. Using requirements lists - Updating, Partial requirements lists, Further uses - Practical applications of requirements lists.

UNIT III Conceptual Design

Steps in Conceptual Design. Abstracting to identify the essential problems - Aim of Abstraction, Broadening the problem. Formulation, Identifying the essential problems from the requirements list, establishing functions structures, Overall function, Breaking a function down into sub-functions. Developing working structures - Searching for working principles, Combining Working Principles, Selecting Working Structures, Practical Application of working structures. Developing Concepts - Firming up into principle solution variants, Evaluating principle solution variants, Practical Applications of working structures. Examples of Conceptual Design - One Handed Household Water Mixing Tap, Impulse - Loading Test Rig.

UNIT IV Embodiment Design

Steps of Embodiment Design, Checklist for Embodiment Design Basic rules of Embodiment Design Principles of Embodiment Design - Principles of Force Transformations, Principles of Division of Tasks, Principles of Self-Help, Principles of Stability and Bi-Stability, Principles of Fault-Free Design Guide for Embodiment Design - General Considerations, Design to allow for expansion, Design to allow for creep and relaxation, Design against Corrosion, Design to minimize wear, Design to Ergonomics, Design for Aesthetics, Design for Production, Design for Assembly, Design for

Maintenance, Design for Recycling, Design for Minimum risk, Design to standards. Evaluation of Embodiment Designs.

UNIT V Mechanical Connections, Mechatronics And Adaptronics:

Mechanical Connections - General functions and General Behaviour, Material connections, From Connections, Force connections, Applications. Mechatronics - General Architecture and Terminology, Goals and Limitations, Development of Mechatronic Solution, Examples. Adaptronics - Fundamentals and Terminology, Goals and Limitations, Development of Adaptronics Solutions, Examples.

Textbooks:

- 1. G.Paul; W. Beitzetal, Engineering Design, Springer International Education, 2010.
- 2. Kevin Otto: K. Wood, Product Design And Development, Pearson Education, 2013.

References:

- 1. Kenith B. Kahu, Product Planning Essentials, Yes dee Publishing, 2011.
- 2. K.T. Ulrich, Product Design and Development, TMH Publishers, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112107217
- https://nptel.ac.in/courses/112104230
- https://www.youtube.com/watch?v=mvaqZAFdL6U
- https://nptel.ac.in/courses/107103082
- https://quizxp.com/nptel-product-design-and-manufacturing-assignment-5/

(20A04705) ELECTRONIC SENSORS (Open Elective Course –III)

Course Objectives:

- Learn the characterization of sensors.
- Known the working of Electromechanical, Thermal, Magnetic and radiation sensors
- Understand the concepts of Electro analytic and smart sensors
- Able to use sensors in different applications

Course Outcomes:

- Learn about sensor Principle, Classification and Characterization.
- Explore the working of Electromechanical, Thermal, Magnetic, radiation and Electro analytic sensors
- Understand the basic concepts of Smart Sensors
- Design a system with sensors

UNIT I

Sensors / Transducers: Principles, Classification, Parameters, Characteristics, Environmental Parameters (EP), Characterization

Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges -Inductive Sensors: Sensitivity and Linearity of the Sensor – Types-Capacitive Sensors: Electrostatic Transducer, Force/Stress Sensors Using Quartz Resonators, Ultrasonic Sensors

UNIT II

Thermal Sensors: Introduction, Gas thermometric Sensors, Thermal Expansion Type Thermometric Sensors, Acoustic Temperature Sensor ,Dielectric Constant and Refractive Index thermo sensors, Helium Low Temperature Thermometer ,Nuclear Thermometer ,Magnetic Thermometer ,Resistance Change Type Thermometric Sensors, Thermo emf Sensors, Junction Semiconductor Types, Thermal Radiation Sensors, Quartz Crystal Thermoelectric Sensors, NQR Thermometry, Spectroscopic Thermometry, Noise Thermometry, Heat Flux Sensors

IINIT III

Magnetic sensors: Introduction, Sensors and the Principles Behind, Magneto-resistive Sensors, Anisotropic Magneto resistive Sensing, Semiconductor Magneto resistors, Hall Effect and Sensors, Inductance and Eddy Current Sensors, Angular/Rotary Movement Transducers, Synchros.

UNIT IV

Radiation Sensors: Introduction, Basic Characteristics, Types of Photo resistors/ Photo detectors, Xray and Nuclear Radiation Sensors, Fibre Optic Sensors

Electro analytical Sensors: The Electrochemical Cell, The Cell Potential - Standard Hydrogen Electrode (SHE), Liquid Junction and Other Potentials, Polarization, Concentration Polarization, Reference Electrodes, Sensor Electrodes, Electro ceramics in Gas Media.

UNIT V

Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters, Compensation, Information Coding/Processing - Data Communication, Standards for Smart Sensor Interface, the Automation Sensors —Applications: Introduction, On-board Automobile Sensors

(Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing – Sensors for environmental Monitoring

Textbooks:

- 1. "Sensors and Transducers D. Patranabis" –PHI Learning Private Limited., 2003.
- 2. Introduction to sensors- John veteline, aravindraghu, CRC press, 2011

References:

- 1. Sensors and Actuators, D. Patranabis, 2nd Ed., PHI, 2013.
- 2. Make sensors: Terokarvinen, kemo, karvinen and villeyvaltokari, 1st edition, maker media, 2014.
- 3. Sensors handbook- Sabriesoloman, 2nd Ed. TMH, 2009

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech L T P C 3 0 0 3

(20A04506) PRINCIPLES OF COMMUNICATION SYSTEMS

Course Objectives:

- To understand the concept of various modulation schemes and multiplexing.
- To apply the concept of various modulation schemes to solve engineering problems.
- To analyse various modulation schemes.
- To evaluate various modulation scheme in real time applications.

Course Outcomes:

- Understand the concept of various modulation schemes and multiplexing
- Apply the concept of various modulation schemes to solve engineering problems
- Analyse various modulation schemes, and evaluate various modulation scheme in real time applications

UNIT I Amplitude Modulation

Introduction to Noise and Fourier Transform. An overview of Electronic Communication Systems. Need for Frequency Translation, Amplitude Modulation: DSB-FC, DSB-SC, SSB-SC and VSB. Frequency Division Multiplexing. Radio Transmitter and Receiver.

UNIT II Angle Modulation

Angle Modulation, Tone modulated FM Signal, Arbitrary Modulated FM Signal, FM Modulation and Demodulation. Stereophonic FM Broadcasting.

UNIT III Pulse Modulation

Sampling Theorem: Low pass and Band pass Signals. Pulse Amplitude Modulation and Concept of Time Division Multiplexing. Pulse Width Modulation. Digital Representation of Analog Signals.

UNIT IV Digital Modulation

Binary Amplitude Shift Keying, Binary Phase Shift Keying and Quadrature Phase Shift Keying, Binary Frequency Shift Keying. Regenerative Repeater.

UNIT VCommunication Systems

Satellite, RADAR, Optical, Mobile and Computer Communication (Block diagram approach only).

Note: The main emphasis is on qualitative treatment. Complex mathematical treatment may be avoided.

Textbooks:

1. Herbert Taub, Donald L Schilling and Goutam Saha, "Principles of Communication Systems", 3rdEdition, Tata McGraw-Hill Publishing Company Ltd., 2008.

References:

- 1. B. P. Lathi, Zhi Ding and Hari M. Gupta, "Modern Digital and Analog Communication Systems", 4th Edition, Oxford University Press, 2017.
- 2. K. Sam Shanmugam "Digital and Analog Communication Systems", Wiley India Edition, 2008.

(20A27704) HUMAN NUTRITION (OPEN ELECTIVE-III)

Course Objectives:

- To get knowledge on Concepts and content of nutrition source and metabolic functions.
- To know about Balanced diets for various groups; Diets and disorders, recommended dietary allowances
- To learn about Epidemiology of under nutrition and over nutrition.
- To understand Nutrition and immunity.

Course Outcomes:

- To study the Salient features of Concepts and content of nutrition, Malnutrition, Nutrition education
- Assessment of nutritional status, disorders Food fad and faddism.

UNIT I

Concepts and content of nutrition: Nutrition agencies; Nutrition of community; Nutritional policies and their implementation; Metabolic function of nutrients. Nutrients: Sources, functions, digestion, absorption, assimilation and transport of carbohydrates, proteins and fats in human beings;

UNIT II

Water and energy balance: Water intake and losses; Basal metabolism- BMR; Body surface area and factors affecting BMR Formulation of diets: Classification of balanced diet; Balanced diets for various groups; Diets and disorders. Recommended dietary allowances (RDA); For various age group; According physiological status; Athletic and sports man; Geriatric persons

UNIT III

Malnutrition: Type of Malnutrition; Multi-factorial causes; Epidemiology of under nutrition and over nutrition; Nutrition and immunity.

UNIT IV

Nutrition education Assessment of nutritional status: Diet surveys; Anthropometry; Clinical examination; Biochemical assessment; Additional medical information

IINIT V

Blood constituents; Hormone types; Miscellaneous disorders Food fad and faddism. Potentially toxic substances in human food.

Textbooks:

- 1. Swaminathan M, Advanced Text Book on Food & Nutrition (Volume I and II) , The Bangalore Printing and Publishing Co.Ltd, Bangalore. 2006
- 2. Stewart Truswell, ABC of Nutrition (4th edition), BMJ Publishing Group 2003, ISBN 0727916645.
- 3. Martin Eastwood, Principles of Human Nutrition, Blackwell Publishing, Boca Rotan

Reference:

- 1. Mike Lean and E. Combet ,Barasi's Human Nutrition A Health Perspective , Second Edition CRC Press, London
- 2. Introduction to Human Nutrition, Micheal J. G., Susan A.L. Aedin C. and Hester H.V, Wiley-Blackwell Publication, UK 2009, ISBN 9781405168076
- 3. Bogert L.J., Goerge M.B, Doris H.C., Nutrition and Physical Fitness, W.B. Saunders Company, Toronto, Canada

(20A54702) NUMERICAL METHODS FOR ENGINEERS

(OPEN ELECTIVE-III)

Course Objectives:

This course aims at providing the student with the knowledge on various numerical methods for solving equations, interpolating the polynomials, evaluation of integral equations and solution of differential equations.

Course Outcomes:

- Apply numerical methods to solve algebraic and transcendental equations.
- Understand fitting of several kinds of curves.
- Derive interpolating polynomials using interpolation formulae.
- Solve differential and integral equations numerically.

UNIT I Solution of Algebraic & Transcendental Equations

Introduction-Bisection Method-Iterative method-Regula falsi method-Newton Raphson method. System of Algebraic equations: Gauss Jordan method-Gauss Siedal method.

UNIT II Curve Fitting

Principle of Least squares- Fitting of curves- Fitting of linear, quadratic and exponential curves.

UNIT III Interpolation

Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae Gauss forward and backward formula, Stirling's formula, Bessel's formula

UNIT IV Numerical Integration

Numerical Integration: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule

UNIT V Solution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Modified Euler's Method-Runge-Kutta Methods.

Textbooks:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, PNIE.
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India

Reference Books:

- 1. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 2. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Online Learning Resources:

https://slideplayer.com/slide/8588078/

(20A56702) SENSORS AND ACTUATORS FOR ENGINEERING APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To provide exposure to various kinds of sensors and actuators and their engineering applications.
- To impart knowledge on the basic laws and phenomenon behind the working of sensors and actuators
- To enlighten the operating principles of various sensors and actuators
- To educate the fabrication of sensors
- To identify the required sensor and actuator for interdisciplinary application

Course Outcomes:

- To recognize the need of sensors and actuators
- To understand working principles of various sensors and actuators
- To identify different type of sensors and actuators used in real life applications
- To exploit basics in common methods for converting a physical parameter into an electrical quantity
- To make use of sensors and actuators for different applications

UNIT I Introduction to Sensors and Actuators

Sensors: Types of sensors: temperature, pressure, strain, active and passive sensors, General characteristics of sensors (Principles only), Materials used and their fabrication process: Deposition: Chemical Vapor Deposition, Pattern: photolithography and Etching: Dry and Wet Etching.

Actuators: Functional diagram of actuators, Types of actuators and their basic principle of working: Hydraulic, Pneumatic, Mechanical, Electrical, Magnetic, Electromagnetic, piezo-electric and piezo-resistive actuators, Simple applications of Actuators.

UNIT II Temperature and Mechanical Sensors

Temperature Sensors: Types of temperature sensors and their basic principle of working: Thermoresistive sensors: Thermistors, Resistance temperature sensors, Silicon resistive sensors, Thermoelectric sensors: Thermocouples, PN junction temperature sensors

Mechanical Sensors: Types of Mechanical sensors and their basic principle of working: Force sensors: strain gauges, tactile sensors, Pressure sensors: semiconductor, piezoresistive, capacitive, VRP.

UNIT III Optical and Acoustic Sensors

Optical Sensors: Basic principle and working of: Photodiodes, Phototransistors and Photo-resistors based sensors, Photomultipliers, Infrared sensors: thermal, PIR, thermopiles

Acoustic Sensors: Principle and working of Ultrasonic sensors, Piezo-electric resonators, Microphones.

UNIT IV Magnetic, Electromagnetic Sensors and Actuators

Motors as actuators (linear, rotational, stepping motors), magnetic valves, inductive sensors (LVDT, RVDT, and Proximity), Hall Effect sensors, Magneto-resistive sensors, Magneto-strictive sensors and actuators, Voice coil actuators (speakers and speaker-like actuators).

UNIT V Chemical and Radiation Sensors

Chemical Sensors: Principle and working of Electro-chemical, Thermo-chemical, Gas, pH, Humidity and moisture sensors.

Radiation Sensors: Principle and working of Ionization detectors, Scintillation detectors, Geiger-Mueller counters, Semiconductor radiation detectors and Microwave sensors (resonant, reflection, transmission)

Textbooks:

- 1. Sensors and Actuators Clarence W. de Silva, CRC Press, 2nd Edition, 2015
- 2. Sensors and Actuators, D.A.Hall and C.E.Millar, CRC Press, 1999

Reference Books:

- 1. Sensors and Transducers- D.Patranabhis, Prentice Hall of India (Pvt) Ltd. 2003
- 2. Measurement, Instrumentation, and Sensors Handbook-John G.Webster, CRC press 1999
- 3. Sensors A Comprehensive Sensors- Henry Bolte, John Wiley.
- 4. Handbook of modern sensors, Springer, Stefan Johann Rupitsch.
- 5. Principles of Industrial Instrumentation By D. Patranabhis

NPTEL courses links

https://onlinecourses.nptel.ac.in/noc21_ee32/preview

(20A51702) CHEMISTRY OF NANOMATERIALS AND APPLICATIONS (OPEN ELECTIVE-III)

Course Objectives:

- To understand synthetic principles of Nanomaterials by various methods
- To characterize the synthetic nanomaterials by various instrumental methods
- To enumerate the applications of nanomaterials in engineering

Course Outcomes:

- Understand the state of art synthesis of nano materials
- Characterize nano materials using ion beam, scanning probe methodologies, position sensitive atom probe and spectroscopic ellipsometry.
- Analyze nanoscale structure in metals, polymers and ceramics
- Analyze structure-property relationship in coarser scale structures
- Understand structures of carbon nano tubes

UNIT I

Introduction: Scope of nanoscience and nanotecnology, nanoscience in nature, classification of nanostructured materials, importance of nano materials.

Synthetic Methods: Bottom-Up approach: Sol-gel synthesis, microemulsions or reverse micelles, co-precipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

UNIT II

Top-Down approach: Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, high energy ball milling.

UNIT III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination.

UNIT IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials, fullerenes, carbon nanotubes, core-shell nanoparticles, nanoshells, self- assembled monolayers, and monolayer protected metal nanoparticles, nanocrystalline materials, magnetic nanoparticles and important properties in relation to nanomagnetic materials, thermoelectric materials, non-linear optical materials, liquid crystals.

UNIT V

Engineering Applications of Nanomaterials

Textbooks:

- 3. NANO: The Essentials: T Pradeep, MaGraw-Hill, 2007.
- **4.** Textbook of Nanoscience and nanotechnology: B S Murty, P Shankar, BaldevRai, BB Rath and James Murday, Univ. Press, 2012.

References:

- **4.** Concepts of Nanochemistry; Ludovico Cademrtiri and Geoffrey A. Ozin& Geoffrey A. Ozin, Wiley-VCH, 2011.
- **5.** Nanostructures & Nanomaterials; Synthesis, Properties & Applications: Guozhong Cao, Imperial College Press, 2007.
- 6. Nanomaterials Chemistry, C. N. R. Rao, Achim Muller, K.Cheetham, Wiley-VCH, 2007.

(20A01705) HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT PRACTICES

(Open Elective Course-IV)

Course Objectives:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard . control, environmental issues and management
- To get exposed to accidents modeling, accident investigation and reporting, concepts of. HAZOP and PHA
- To be familiar with safety measures in design and process operations.
- To get exposed to risk assessment and management, principles and methods

Course Outcomes:

- To understand safety, health and environmental management.
- To be familiar with hazard classification and assessment, hazard evaluation and hazard.
- To get exposed to accidents modelling, accident investigation and reporting control, environmental issues and management
- To get concepts of HAZOP and PHA.
- To be familiar with safety measures in design and process operations.

UNIT I

Introduction to safety, health and environmental management - Basic terms and their definitions - Importance of safety - Safety assurance and assessment - Safety in design and operation - Organizing for safety.

UNIT II

Hazard classification and assessment - Hazard evaluation and hazard control.

Environmental issues and Management - Atmospheric pollution - Flaring and fugitive release - Water pollution - Environmental monitoring - Environmental management.

UNIT III

Accidents modelling - Release modelling - Fire and explosion modelling - Toxic release and dispersion Modelling

UNIT IV

Accident investigation and reporting - concepts of HAZOP and PHA.

Safety measures in design and process operations - Inserting, explosion, fire prevention, sprinkler systems.

UNIT V

Risk assessment and management - Risk picture - Definition and characteristics - Risk acceptance criteria - Quantified risk assessment - Hazard assessment - Fatality risk assessment - Risk management principles and methods.

Textbooks:

- 1. Process Safety Analysis, by Skelton. B, Gulf Publishing Company, Houston, 210pp., 1997.
- 2. Risk Management with Applications from Offshore Petroleum Industry, by TerjeAven and Jan Erik Vinnem, Springer, 200pp., 2007.

References:

- 1. Introduction to Safety and Reliability of Structures, by Jorg Schneider
- 2. Structural Engineering Documents Vol. 5, International Association for Bridge and Structural Engineering (IABSE), 138pp., 1997.
- 3. Safety and Health for Engineers, by Roger L. Brauer, John Wiley and Sons Inc. pp. 645-663, 2006.
- 4. Health, Safety and Environmental Management in Offshore and Petroleum Engineering, Srinivasan Chandrasekaran, John Wiley and Sons, 2016.

Online Learning Resources: https://nptel.ac.in/courses/114106017

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A02705) RENEWABLE ENERGY SYSTEMS

(Open Elective Course – IV)

Course Objectives:

- Understand various sources of Energy and the need of Renewable Energy Systems.
- Understand the concepts of Solar Radiation, Wind energy and its applications.
- Analyze solar thermal and solar PV systems
- Understand the concept of geothermal energy and its applications, biomass energy, the concept of Ocean energy and fuel cells.

Course Outcomes:

- Understand various alternate sources of energy for different suitable application requirements
- Understand the concepts of solar energy generation strategies and wind energy system
- Analyze Solar and Wind energy systems
- Understand the basics of Geothermal Energy Systems, various diversified energy scenarios of ocean, biomass and fuel cells

UNIT I SOLAR ENERGY

Solar radiation - beam and diffuse radiation, solar constant, earth sun angles, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length.

flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

UNIT II PV ENERGY SYSTEMS

Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Electrical characteristics of silicon PV cells and modules, PV systems for remote power, Grid connected PV systems.

UNIT III WIND ENERGY

Principle of wind energy conversion; Basic components of wind energy conversion systems; windmill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.

UNIT IV GEOTHERMAL ENERGY

Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

UNIT V MISCELLANEOUS ENERGY TECHNOLOGIES

Ocean Energy: Tidal Energy-Principle of working, performance and limitations. Wave Energy-Principle of working, performance and limitations.

Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration

Fuel cell: Principle of working of various types of fuel cells and their working, performance and limitations.

Textbooks:

- 1. Stephen Peake, "Renewable Energy Power for a Sustainable Future", Oxford International Edition, 2018.
- 2. G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.

Reference Books:

- 1. S. P. Sukhatme, "Solar Energy", 3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008.
- 2. B H Khan , "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 3. S. Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria& Sons, 2012.
- 4. G. N. Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa Publishing House, 2004.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103103206
- 2. https://nptel.ac.in/courses/108108078

(20A03705) INTRODUCTION TO COMPOSITE MATERIALS (Open Elective-IV)

Course Objectives:

- Introduce composite materials and their applications.
- Build proper background for stress analysis in the design of composite structures.
- Familiarize various properties of composite materials.
- Focus on biodegradable composites.

Course Outcomes:

- Identify the practical applications of composites. (L3)
- Identify the polymer matrix composites. (L3)
- Classify of bio- degradable composites. (L2)
- Outline the various types of ceramic matrix materials. (L2)

UNIT I Introduction to composites

Fundamentals of composites – Definition – classification – based on Matrix – based on structure – Advantages and applications of composites - Reinforcement – whiskers – glass fiber – carbon fiber – Aramid fiber – ceramic fiber – Properties and applications.

UNIT II Polymer matrix composites

Polymers - Polymer matrix materials - PMC processes - hand layup processes - spray up processes - resin transfer moulding - Pultrusion - Filament winding - Auto clave based methods - Injection moulding - sheet moulding compound - properties and applications of PMCs.

UNIT III Metal matrix composites

Metals - types of metal matrix composites - Metallic Matrices. Processing of MMC - Liquid state processes - solid state processes - In-situ processes. Properties and applications of MMCs.

UNIT IV Ceramic matrix composites

Ceramic matrix materials – properties – processing of CMCs –Sintering - Hot pressing – Infiltration – Lanxide process – Insitu chemical reaction techniques – solgel polymer pyrolsis –SHS - Cold isostatic pressing (CIPing) – Hot isostatic pressing (HIPing). Properties and Applications of CCMs.

UNIT V Advances & Applications of composites

Advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbonfibre perform. Properties and applications of Carbon-carbon composites. Composites for aerospace applications.Bio degradability, introduction of bio composites, classification, processing of bio composites, applications of bio composites - Mechanical, Biomedical, automobile Engineering.

Textbooks:

- 1. Chawla K.K, Composite materials, 2/e, Springer Verlag, 1998.
- 2. Mathews F.L. and Rawlings R.D., Chapman and Hall, Composite Materials: Engineering and Science, 1/e, England, 1994.

Reference Books:

- 1. H K Shivanand, B V Babu Kiran, Composite Materials, ASIAN BOOKS, 2011.
- 2. A.B. Strong, Fundamentals of Composite Manufacturing, SME Publications, 1989.
- 3. S.C. Sharma, Composite materials, Narosa Publications, 2000.
- 4. Maureen Mitton, Hand Book of Bio plastics & Bio composites for Engineering applications, John Wiley publications, 2011.

Online Learning Resources:

- https://nptel.ac.in/courses/112104229
- https://nptel.ac.in/courses/112104168
- https://nptel.ac.in/courses/101104010
- https://nptel.ac.in/courses/105108124
- https://nptel.ac.in/courses/112104221

(20A04706) MICROCONTROLLERS & APPLICATIONS (Open Elective Course –IV)

Course Objectives:

- Describe the Architecture of 8051 Microcontroller and Interfacing of 8051 to external memory.
- Write 8051 Assembly level programs using 8051 instruction set.
- Describe the Interrupt system, operation of Timers/Counters and Serial port of 8051.
- Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051.

Course Outcomes:

- Understand the importance of Microcontroller and Acquire the knowledge of Architecture of 8051 Microcontroller.
- Apply and Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to using 8051 I/O ports.
- Develop the 8051 Assembly level programs using 8051 Instruction set
- Design the Interrupt system, operation of Timers/Counters and Serial port of 8051

UNIT 1 8051 Microcontroller:

Microprocessor Vs Microcontroller, Embedded Systems, Embedded Microcontrollers, 8051 Architecture- Registers, Pin diagram, I/O ports functions, Internal Memory organization. External Memory (ROM & RAM) interfacing.

UNIT II

Addressing Modes, Data Transfer instructions, Arithmetic instructions, Logical instructions, Branch instructions, Bit manipulation instructions. Simple Assembly language program examples to use these instructions.

UNIT III

8051 Stack, Stack and Subroutine instructions. Simple Assembly language program examples to use subroutine instructions.8051 Timers and Counters – Operation and Assembly language programming to generate a pulse using Mode-1 and a square wave using Mode-2 on a port pin.

UNIT IV

8051 Serial Communication- Basics of Serial Data Communication, RS- 232 standard, 9 pin RS232 signals, Simple Serial Port programming in Assembly and C to transmit a message and to receive data serially.8051 Interrupts. 8051 Assembly language programming to generate an external interrupt using a switch.

UNIT V

8051 C programming to generate a square waveform on a port pin using a Timer interrupt. Interfacing 8051 to ADC-0804, DAC, LCD and Interfacing with relays and opto isolators, Stepper Motor Interfacing, DC motor interfacing, PWM generation using 8051.

Textbooks:

- 1. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C", PHI, 2006 / Pearson, 2006.
- 2. Kenneth J. Ayala, "The 8051 Microcontroller", 3rd Edition, Thomson/Cengage Learning.

References:

- 1. Manish K Patel, "The 8051 Microcontroller Based Embedded Systems", McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005.

(20A04706) PRINCIPLES OF CELLULAR AND MOBILE COMMUNICATIONS Course Objectives:

- To understand the concepts and operation of cellular systems.
- To apply the concepts of cellular systems to solve engineering problems.
- To analyse cellular systems for meaningful conclusions.
- To evaluate suitability of a cellular system in real time applications.
- To design cellular patterns based on frequency reuse factor.

Course Outcomes:

At the end of the course, the student should be able to

- Understand the concepts and operation of cellular systems (L1)
- Apply the concepts of cellular systems to solve engineering problems (L2).
- Analyse cellular systems for meaningful conclusions, Evaluate suitability of a cellular system in real time applications (L3).
- Design cellular patterns based on frequency reuse factor (L4).

UNIT I Introduction to Cellular Mobile Systems

Why cellular mobile communication systems? A basic cellular system, Evolution of mobile radio communications, Performance criteria, Characteristics of mobile radio environment, Operation of cellular systems. Examples for analog and digital cellular systems.

UNIT II Cellular Radio System Design

General description of the problem, Concept of frequency reuse channels, Cochannel interference reduction, Desired C/I ratio, Cell splitting and sectoring.

UNIT III Handoffs and Dropped Calls

Why handoffs and types of handoffs, Initiation of handoff, Delaying a handoff, Forced handoffs, Queuing of handoffs, Power-difference handoffs, Mobile assisted handoff and soft handoff, Cell-site handoff, Intersystem handoff. Introduction to dropped call rate.

UNIT IV Multiple Access Techniques for Wireless Communications

Introduction, Frequency Division Multiple Access, Time Division Multiple Access, Code Division Multiple Access and Space Division Multiple Access.

UNIT V Digital Cellular Systems

Global System for Mobile Systems, Time Division Multiple Access Systems, Code Division Multiple Access Systems. Examples for 2G, 3G and 4G systems. Introduction to 5G system.

Textbooks:

- 1. William C. Y. Lee, "Mobile Cellular Telecommunications", 2ndEdition, McGraw-Hill International, 1995.
- 2. Theodore S. Rappaport, "Wireless Communications Principles and Practice", 2ndEdition, PHI, 2004.

References:

1. Aditya K. Jagannatham "Principles of Modern Wireless Communications Systems – Theory and Practice", McGraw-Hill International, 2015.

(20A27705) WASTE AND EFFLUENT MANAGEMENT (OPEN ELECTIVE-IV)

Course Objectives:

- To understand the wastewater treatment process.
- To gain knowledge on waste disposal in various ways.
- To know about advances in wastewater treatment.

Course Outcomes:

 Acquires knowledge on technologies used for chemical and biological methods of waste water and effluent treatment

UNIT I

Wastewater Treatment an Overview: Terminology – Regulations – Health and Environment Concerns in waste water management – Constituents in waste water inorganic – Organic and metallic constituents. Process Analysis and Selection: Components of waste water flows – Analysis of Data – Reactors used in waste water treatment – Mass Balance Analysis – Modeling of ideal and non ideal flow in Reactors – Process Selection

UNIT II

Waste disposal methods – Physical, Chemical & Biological; Economical aspects of waste treatment and disposal. Treatment methods of solid wastes: Biological composting, drying and incineration; Design of Solid Waste Management System: Landfill Digester, Vermicomposting Pit.

IINIT III

Introduction: Classification and characterization of food industrial wastes from Fruit and Vegetable processing industry, Beverage industry; Fish, Meat & Poultry industry, Sugar industry and Dairy industry.

Chemical Unit Processes: Role of unit processes in waste water treatment chemical coagulation – Chemical precipitation for improved plant performance chemical oxidation – Neutralization – Chemical Storage

UNIT IV

Biological Treatment: Overview of biological Treatment – Microbial metabolism – Bacterial growth and energetics – Aerobic biological oxidation – Anaerobic fermentation and oxidation – Trickling filters – Rotating biological contractors – Combined aerobic processes – Activated sludge film packing.

UNIT V

Advanced Wastewater Treatment: Technologies used in advanced treatment – Classification of technologies. Removal of Colloids and suspended particles – Depth Filtration – Surface Filtration – Membrane Filtration – Ion Exchange – Advanced oxidation process.

Textbooks:

- Herzka A & Booth RG; "Food Industry Wastes: Disposal and Recovery"; Applied Science Pub Ltd. 1981.
- 2. Fair GM, Geyer JC & Okun DA; "Water & Wastewater Engineering"; John Wiley & Sons, Inc. 1986.

References:

- 1. GE; "Symposium: Processing Agricultural & Municipal Wastes"; AVI. 1973,
- 2. Inglett Green JH & Kramer A; "Food Processing Waste Management"; AVI. 1979,
- 3. Rittmann BE & McCarty PL; "Environmental Biotechnology: Principles and Applications"; McGrow-Hill International editions 2001,.
- 4. Bhattacharyya B C & Banerjee R; "Environmental Biotechnology"; Oxford University Press.
- 5. Bartlett RE; "Wastewater Treatment; Applied Science" Pub Ltd.
- 6. G. Tchobanoglous, FI Biston, "Waste water Engineering Treatment and Reuse": Mc Graw Hill, 2002
- "Industrial Waste Water Management Treatment and Disposal by Waste Water" 3rd Edition Mc Graw Hill 2008

(20A54703) NUMBER THEORY AND ITS APPLICATIONS

(OPEN ELECTIVE-IV)

Course Objectives:

This course enables the students to learn the concepts of number theory and its applications to information security.

Course Outcomes:

- Understand number theory and its properties.
- Understand principles on congruences
- Develop the knowledge to apply various applications
- Develop various encryption methods and its applications.

UNIT I Integers, Greatest common divisors and prime Factorization

The well-ordering property-Divisibility-Representation of integers-Computer operations with integers-Prime numbers-Greatest common divisors-The Euclidean algorithm -The fundamental theorem of arithmetic-Factorization of integers and the Fermat numbers-Linear Diophantine equations

UNIT II Congruences

Introduction to congruences -Linear congruences-The Chinese remainder theorem-Systems of linear congruences

UNIT III Applications of Congruences

Divisibility tests-The perpetual calendar-Round-robin tournaments-Computer file storage and hashing functions. Wilson's theorem and Fermat's little theorem- Pseudo primes- Euler's theorem-Euler's p hi-function- The sum and number of divisors- Perfect numbers and Mersenne primes.

UNIT IV Finite fields & Primality, factoring

Finite fields- quadratic residues and reciprocity-Pseudo primes-rho method-fermat factorization and factor bases.

UNIT V Cryptology

Basic terminology-complexity theorem-Character ciphers-Block ciphers-Exponentiation ciphers-

Public-key cryptography-Discrete logarithm-Knapsack ciphers- RSA algorithm-Some applications to computer science.

Textbooks:

- 1. Elementary number theory and its applications, Kenneth H Rosen, AT & T Information systems & Bell laboratories.
- 2. A course in Number theory & Cryptography, Neal Koblitz, Springer.

Reference Books:

- **1.** An Introduction To The Theory Of Numbers, Herbert S. Zuckerman, Hugh L. Montgomery, Ivan Niven, wiley publishers
- 2. Introduction to Analytic number theory-Tom M Apostol, springer
- 3. Elementary number theory, VK Krishnan, Universities press

Online Learning Resources:

https://www.slideshare.net/ItishreeDash3/a-study-on-number-theory-and-its-applications

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A56703) SMART MATERIALS AND DEVICES (OPEN ELECTIVE-IV)

Course Objectives:

- To provide exposure to smart materials and their engineering applications.
- To impart knowledge on the basics and phenomenon behind the working of smart materials
- To enlighten the properties exhibited by smart materials
- To educate various techniques used to synthesize and characterize smart materials
- To identify the required smart material for distinct applications/devices

Course Outcomes:

- to recognize the need of smart materials
- to understand the working principles of smart materials
- to know different techniques used to synthesize and characterize smart materials
- to exploit the properties of smart materials
- to make use of smart materials for different applications

UNIT I

Introduction: Historical account of the discovery and development of smart materials, Two phases: Austenite and Martensite, Temperature induced phase changes, Shape memory effect, Pseudoelasticity, One-way shape memory effect, Two-way shape memory effect.

UNIT II: Properties of Smart Materials: Physical principles of optical, Electrical, Dielectric, Piezoelectric, Ferroelectric, Pyroelectric and Magnetic properties of smart materials

UNIT III: Synthesis of smart materials: Solid state reaction technique, Chemical route: Chemical vapour deposition, Sol-gel technique, Hydrothermal method, Co-precipitaiton. Green synthesis, Mechanical alloying and Thin film deposition techniques: Chemical etching, Sol-gel, spray pyrolysis.

UNIT IV: Characterization techniques: X-ray diffraction, Raman spectroscopy (RS), Fourier-transform infrared reflection (FTIR), UV-Visible spectroscopy, Scanning electron microscopy (SEM),

Transmission electron microscopy, Atomic force microscopy (AFM) and Differential Scanning Calorimetry (DSC).

UNIT V: Materials and Devices: Characteristics of shape memory alloys, Magnetostrictive, Optoelectronic, Piezoelectric, Metamaterials, Electro-rheological and Magneto-rheological materials and Composite materials.

Devices based on smart materials: Sensors & Actuators, MEMS and intelligent devices, Future scope of the smart materials.

Textbooks:

- 1. Encyclopaedia of Smart Materials- Mel Schwartz, John Wiley & Sons, Inc. 2002
- 2. Smart Materials and Structures M. V. Gandhi and B.S. Thompson, Champman and Hall, 1992

References:

- 1. Smart Materials and Technologies- M. Addington and D. L. Schodek, , Elsevier, 2005.
- 2. Characterization and Application of smart Materials -R. Rai, Synthesis, , Nova Science, 2011.
- 3. Electroceramics: Materials, Properties, Applications -A.J. Moulson and J.M. Herbert, 2ndEdn., John Wiley & Sons, 2003.
- 4. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic 1. Emission Sensors, Materials and Amplifiers, G. Gautschi, Springer, 2002.
- 5. Optical Metamaterials: Fundamentals and Applications -W. Cai and V. Shalaev, springer,2010.
- 6. Smart Materials and Structures P. L Reece, New Research, Nova Science, 2007

NPTEL courses links

https://nptel.ac.in/courses/112/104/112104173/

https://nptel.ac.in/courses/112/104/112104251/

https://nptel.ac.in/content/storage2/courses/112104173/Mod_1_smart_mat_lec

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech IV-I Sem L T P C 3 0 0 3

(20A51703) GREEN CHEMISTRY AND CATALYSIS FOR SUSTAINABLE ENVIRONMENT (OPEN ELECTIVE-IV)

Course Objectives:

- Learn an interdisciplinary approach to the scientific and societal issues arising from industrial chemical production, including the facets of chemistry and environmental health sciences that can be integrated to promote green chemistry and the redesign of chemicals, industrial processes and products.
- Understand the use of alternatives assessments that combine chemical, environmental health, regulatory, and business considerations to develop safer products.

Course Outcomes:

• Recognize and acquire green chemistry concepts and apply these ideas to develop respect for the inter connectedness of our world and an ethic of environmental care and sustainability.

UNIT I: PRINCIPLES AND CONCEPTS OF GREEN CHEMISTRY

Introduction, Green chemistry Principles, sustainable development and green chemistry, atom economy, atom economic: Rearrangement and addition reactions and un-economic reactions: Substitution, elimination and Wittig reactions, Reducing Toxicity. Waste - problems and Prevention: Design for degradation, Polymer recycling.

UNIT II: CATALYSIS AND GREEN CHEMISTRY

Introduction to catalysis, Heterogeneous catalysts: Basics of Heterogeneous Catalysis, Zeolites and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous catalysis: Transition Metal Catalysts with Phosphine Ligands, Greener Lewis Acids, Asymmetric Catalysis, Heterogenising the Homogeneous catalysts,

Phase transfer catalysis: Hazard Reduction, C–C Bond Formation, Oxidation Using Hydrogen Peroxide, Bio-catalysis and photo-catalysis with examples.

UNIT III: ORGANIC SOLVENTS: ENVIRONMENTALLY BENIGN SOLUTIONS

Organic solvents and volatile organic compounds, solvent free systems, supercritical fluids: Super critical carbondioxide, super critical water and water as a reaction solvent: water-based coatings, Ionic liquids as catalyst and solvent

UNIT IV: EMERGING GREENER TECHNOLOGIES AND ALTERNATIVE ENERGY SOURCES

Biomass as renewable resource, Energy: Fossil Fuels, Energy from Biomass, Solar Power, Other Forms of Renewable Energy, Fuel Cells, Chemicals from Renewable feedstocks: Chemicals from Renewable Feedstocks: Chemicals from Fatty Acids, Polymers from Renewable Resources, Some Other Chemicals from Natural Resources, Alternative Economies: The Syngas Economy, The Biorefinery, Design for energy efficiency: Photochemical Reactions: Advantages of and Challenges Faced by Photochemical Processes, Examples of Photochemical Reactions, Chemistry Using Microwaves: Microwave Heating, Microwave-assisted Reactions, Sonochemistry: Sonochemistry and Green Chemistry, Electrochemical Synthesis: Examples of Electrochemical Synthesis. Industrial applications of alternative environmentally benign catalytic systems for carrying out the important reactions such as selective oxidation, reduction and C-C bond formations (specific reactions).

UNIT V: GREEN PROCESSES FOR GREEN NANOSCIENCE

Introduction and traditional methods in the nanomaterials synthesis, Translating green chemistry principles for practicing Green Nanoscience. Green Synthesis of Nanophase Inorganic Materials and Metal Oxide Nanoparticles: Hydrothermal Synthesis, Reflux Synthesis, Microwave-Assisted Synthesis, Other methods for Green synthesis of metal and metal oxide nanoparticles, Green chemistry applications of Inorganic nanomaterials

Textbooks:

- 1. M. Lancaster, Green Chemistry an introductory text, Royal Society of Chemistry, 2002.
- 2. Paul T. Anastas and John C. Warner, Green Chemistry Theory and Practice, 4th Edition, Oxford

University Press, USA

References:

- 1. Green Chemistry for Environmental Sustainability, First Edition, Sanjay K. Sharma and AckmezMudhoo, CRC Press, 2010.
- 2. Edited by AlvisePerosa and Maurizio Selva, Hand Book of Green chemistry Volume 8:Green Nanoscience, wiley-VCH, 2013.

HONOURS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B.Tech (CSD) L T P C

3 1 0 4

(20A38H01) SPATIAL AND MULTIMEDIA DATABASE

Course Objectives:

• Introduce the basic concepts, data models and indexing structures for spatial data, multimedia data.

Course Outcomes:

- Understand data models, storage, indexing and design of spatial databases.
- Represent image database with R-tree
- Store and retrieve multimedia data.

UNIT I Lecture 8Hrs

Introduction to Spatial Databases: Overview, beneficiaries, GIA and SDBMS, users, Space taxonomy, query language, query processing, query optimization.

Spatial Concepts and Data Models: Models of Spatial information, three step database design, Extending the ER model with spatial concept, object-oriented data modeling. Spatial Query Languages.

UNIT II Lecture 9Hrs

Spatial Storage and Indexing: Storage-disks and files, spatial indexing, TR*, spatial join index.

Query processing and optimization – Evaluation of Spatial operations, query optimization, Analysis of Spatial index structures, distributed and parallel spatial database system.

Multidimensional Data Structures: k-d Trees, Point Quadtrees, The MX-Quadtree, R-Trees, comparison of Different Data Structures.

UNIT III Lecture 9Hrs

Image Databases: Raw Images, Compressed Image Representations, Image Processing: Segmentation, Similarity-Based Retrieval, Alternative Image DB Paradigms, Representing Image DBs with Relations, Representing Image DBs with R-Trees, Retrieving Images By Spatial Layout, Implementations.

Text/Document Databases: Precision and Recall, Stop Lists, Word Stems, and Frequency Tables, Latent Semantic Indexing, TV-Trees, Other Retrieval Techniques

UNIT IV Lecture 9Hrs

Video Databases: Organizing Content of a Single Video, Querying Content of Video Libraries, Video Segmentation, video Standards

Audio Databases: A General Model of Audio Data, Capturing Audio Content through Discrete Transformation, Indexing Audio Data

Multimedia Databases: Design and Architecture of a Multimedia Database, Organizing Multimedia Data Based on The Principle of Uniformity, Media Abstractions, Query Languages for Retrieving Multimedia Data, Indexing SMDSs with Enhanced Inverted Indices, Query Relaxation/Expansion.

UNIT V Lecture 8Hrs

Creating Distributed Multimedia Presentations: Objects in Multimedia Presentations, Specifying Multimedia Documents with Temporal Constraints, Efficient Solution of Temporal Presentation Constraints, Spatial Constraints. Distributed Media Servers: Distributed multimedia server architecture, distributed retrieval plans, optimal distributed retrieval plans.

Textbooks:

- 1. Shashi Shekhar, SanjivChawla ,Spatial Databases-A Tour, Pearson Education.
- 2. V.S. Subrahmanian , Principles of Multimedia Database Systems, Morgan Kauffman.

Reference Books:

- 1. Multimedia Databases: An object relational approach, Lynne Dunckley, Pearson Education.
- 2. Multimedia Database Systems, Prabhakaram, Springer.

Online Learning Resources: https://www.e-education.psu.edu/spatialdb/node/1776,

https://www.coursera.org/lecture/spatial-data-science/spatial-database-management-system-sdbms-tAenr

(20A38H02) DESIGN FOR USER EXPERIENCE

Course Objectives:

- To teach the fundamental concepts, techniques, practices, workflows, and tools associated with the practice of user experience design in web and mobile experiences.
- To achieve a deep understanding of the entire life-cycle of design—the process, purpose, and tools.

Course Outcomes:

At the end of this course, students will be able to

- Understand iterative user-centered design of graphical user interfaces
- Apply the user Interfaces to different devices and requirements,
- Create high quality professional documents and artifacts related to the design process.
- **Discover** the industry-standard tools and specific project deliverables in UI/UX.
- Identify the root causes for strengths and weaknesses of interfaces and provide suggestions of how to improve them

UNIT I Lecture 8Hrs

User Experience and Why it Matters: Everyday Miseries, Introducing User Experience, From Product Design to User Experience Design, Designing for Experience: Use Matters, User Experience and the Web, Good User Experience is Good Business, Minding your Users, Understanding Users.

Lecture 8Hrs

UNIT II

Meet the Elements: The Five Planes, Building from Bottom to Top, A Basic Duality, The Elements of User Experience, Using the Elements.

UNIT III Lecture 8Hrs

The Strategy Plane: Defining the Strategy, Product Objectives, User Needs, Team Roles and Process.

The Scope Plane: Defining the Scope, Functionality and Content, Defining Requirements, Functional Specification, Content Requirements, Prioritizing Requirements.

UNIT IV Lecture 9Hrs

The Structure Plane: Defining the Structure, Interaction Design, Information Architecture, Team Roles and Process.

The Skeleton Plane: Defining the Skeleton, Convention and Metaphor, Interface Design, Navigation Design, Information Design, Wireframes.

Lecture 9Hrs

UNIT V

The Surface Plane: Defining the Surface, Making Sense of the Senses, Follow the Eye, Contrast and Uniformity, Internal and External Consistency, Color Palettes and Typography, Design Comps and Style Guides, Usability Testing.

The Elements Applied: Asking the Right Questions, The Marathon and the Sprint.

Textbooks:

- 1. The Elements of User Experience: User-Centered Design for the Web and Beyond, Second Edition Jesse James Garrett, Pearson Education. 2011.
- 2. Don't Make Me Think, Steve Krug, ISBN: 0321344758
- 3. A Project Guide to UX Design: For user experience designers in the field or in the making (2nd. ed.). Russ Unger and Carolyn Chandler. New Riders Publishing, USA, 2012.

Reference Books:

- 1. The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and Techniques, Third Edition Wilbert O. Galitz, Wiley Publishing, 2007.
- 2. The UX Book Process and Guidelines for Ensuring a Quality User Experience, Rex Hartson and Pardha S. Pyla, Elsevier, 2012.
- 3. Designing for the Digital Age, by Kim Goodwin, ISBN: 0470229101.

Online Learning Resources:

https://www.udemy.com/course/user-experience-design-fundamentals/

(20A38H03) DIGITAL AUDIO AND VIDEO PRODUCTION WORKFLOW

Course Objectives:

To introduce the world of Digital Audio and Video Production Workflow.

Course Outcomes:

At the end of this course, students will be able to:

- To understand and utilize general digital audio processing theory.
- To practice active listening & audio analysis & Mixing Multitracks sessions using a DAW.
- To Understand and utilize pre-production Video Shooting techniques
- To practice Post production techniques for video production

UNIT I Lecture 9Hrs

Sound Synthesis: Digital Audio Concepts, Music Systems Programming, Introduction to Digital Sound Synthesis, Sampling and Additive Synthesis, Multiple Wavetable, Wave Terrain, Grannular, and Subtractive Synthesis, Modulation Synthesis, Physical Modeling and Format Synthesis

UNIT II Lecture 9Hrs

Introduction to Digital Audio Workstation, Recording Audio for Voice Overs & Music, Audio Mixing using Reaper & Protocols, Introduction to Midi Programming for Sound Synthesis and Control Change, Understanding Compressing, Introduction to Foley Sounds & Designing Techniques, Mixing Multitrack Audio.

UNIT III Lecture 9Hrs

Overview of Video Production, First Step in Video Production, Technicalities, Production Crew, Video Production Crew Job Descriptions, Professional Crew, Organizing the Production, Production Techniques, Writing for Video, The Camera, Camera Features, Controlling the Camera, Using the Camera.

UNIT IV Lecture 8Hrs

Shooting People and Objects, Shooting Instructional Productions, Working with the Talent, Audio for Video, Supporting the Microphone, Controlling Dynamics.

UNIT V Lecture 8Hrs

Lighting for Video, Lightweight Light Supports, Lighting Instruments, Practical Lighting, The Background, Television Graphics, Recording and Viewing the Video, Editing.

Textbooks:

- 1. The Computer Music Tutorial by Curtis Roads
- 2. On Sonic Art by Trever Wishart

Reference Books:

1. Video Production Handbook by Gerald Millerson, Jim Owens, Asbury College

Online Learning Resources:

https://www.udemy.com/course/video-production/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (CSD)

L T P C

3 1 0 4

(20A38H04) INFORMATION SECURITY

Course Objectives:

Develop an understanding of information security, gain familiarity with prevalentattacks, defenses against systems, and forensics to investigate the aftermath, develop a basic understanding ofcryptography, how it has evolved, have a knowledge of information security planning and maintenance.

Course Outcomes:

- Enumerate the key terms and basics of Information Security along with Sec SDLC.
- Understand how risk is identified and managed.
- Identify management's role in development, maintenance and enforcement of Information Security policies.
- Plan for and respond to intruders in an information system, understand the basicprinciples of cryptography.
- Analyze the organizations information security blue print, discuss the need ofmaintaining information security program.

UNIT I Lecture 8Hrs

Introduction: History, critical characteristics of information, NSTISSC security model, Components of an information system, Securing the components, balancing security and access, The SDLC, The security SDLC

Need for Security: Business needs, Threats, Attacks-secure software development

UNIT II Lecture 9Hrs

Legal, Ethical and Professional Issues: Law and ethics in information security, relevant U.S laws-international laws and legal bodies, Ethics and information security

Risk Management: Overview, Risk Identification, risk assessment, Risk Control strategies, selecting a risk control strategy, Quantitative versus qualitative risk control practices, Risk management discussion points, recommended risk control practices

UNIT III Lecture 8Hrs

Planning for Security: Security policy, Standards and practices, Security blue print, Security education, Continuity strategies.

Security Technology: Firewalls and VPNs: Physical design, firewalls, protecting remote connections.

UNIT IV Lecture 9Hrs

Security Technology: Intrusion detection, Access control and other security tools: Intrusion detection and prevention systems, Scanning and analysis tools, Access control devices.

Cryptography: Foundations of cryptology, cipher methods, cryptographic Algorithms, Cryptographic tools, Protocols for secure communications, Attacks on cryptosystems

UNIT V Lecture 9Hrs

Implementing Information Security: information security project management, technical topics of implementation, Non- technical aspects of implementation, Security certification and accreditation

Security and Personnel: Positioning and staffing security function, Employment policies and practices, internal control strategies. Information security Maintenance: Security management models. The maintenance model, Digital forensics.

Textbooks:

- Michael E. Whitman and Hebert J Mattord, Principles of Information Security, 4th edition, Ed. Cengage Learning 2011
- 2. Thomas R Peltier, Justing Peltier, John Blackley, Information Security.

Fundamentals, Auerbacj Publications 2010

Reference Books:

- 1. Detmar W Straub, Seymor Goodman, Richard L Baskerville, Information Security. Policy proceses and practices PHI 2008
- 2. Marks Merkow and Jim Breithaupt, Information Security. Principle and Practices, Pearson Education, 2007.

Online Learning Resources:

- 1. https://onlinecourses.nptel.ac.in/noc17_cs08/preview
- 2. http://nptel.ac.in/courses/106106129/