

# M.TECH. IN EMBEDDED SYSTEMS

# **COURSE STRUCTURE & SYLLABI**

# SEMESTER – I

| S. No. | Course                              | Course Name                                                                                                           | Category | Hou | ırs pe | r | Credi |
|--------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|-----|--------|---|-------|
|        | codes                               |                                                                                                                       |          | L   | Т      | Р | ts    |
| 1.     | 21D06102                            | Microcontrollers and Programmable Digital Signal Processors                                                           | PC       | 3   | 0      | 0 | 3     |
| 2.     | 21D06101                            | Digital System Design with PLDs                                                                                       | PC       | 3   | 0      | 0 | 3     |
| 3.     | 21D55101a<br>21D57102<br>21D06103a  | <b>Program Elective – I</b><br>Advanced Microcontrollers<br>CMOS Digital IC Design<br>Advanced Computer Architectures | PE       | 3   | 0      | 0 | 3     |
| 4.     | 21D06203c<br>21D55102a<br>21D06203a | Program Elective – II<br>Embedded Real Time Operating Systems<br>Advanced Computer Networks<br>SoC Architecture       | PE       | 3   | 0      | 0 | 3     |
| 5.     | 21D06105                            | Digital System Design Lab                                                                                             | PC       | 0   | 0      | 4 | 2     |
| 6.     | 21D06106                            | Microcontroller and Programmable Digital Signal Processors Lab                                                        | PC       | 0   | 0      | 4 | 2     |
| 7.     | 21DRM101                            | Research Methodology and IPR                                                                                          | MC       | 2   | 0      | 0 | 2     |
| 8.     | 21DAC101a<br>21DAC101b<br>21DAC101c | Audit Course – I<br>English for Research paper writing<br>Disaster Management<br>Sanskrit for Technical Knowledge     | AC       | 2   | 0      | 0 | 0     |
|        | -                                   | Total                                                                                                                 | -        |     | •      |   | 18    |



## M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

# SEMESTER – II

| S.No. | Course                              | Course Name                                                                                                                         | Category | Hou      | rs per | week     | Credit |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------|----------|--------|
|       | codes                               |                                                                                                                                     |          | L        | Т      | Р        | S      |
| 1.    | 21D06201                            | Embedded System Design                                                                                                              | PC       | 3        | 0      | 0        | 3      |
| 2.    | 21D55201                            | Embedded Programming                                                                                                                | PC       | 3        | 0      | 0        | 3      |
| 3.    | 21D55202a<br>21D55202b              | <b>Program Elective – III</b><br>Sensors and Actuators<br>Modern Control Theory<br>Artificial Intelligence and Machine Learning     | PE       | 3        | 0      | 0        | 3      |
| 4.    | 21D06301b<br>21D06103b<br>21D06204a | <b>Program Elective – IV</b><br>Soft Computing Techniques<br>Design of Fault Tolerant Systems<br>Hardware and Software Co-design    | PE       | 3        | 0      | 0        | 3      |
| 5.    | 21D06205                            | Embedded System Design Lab                                                                                                          | PC       | 0        | 0      | 4        | 2      |
| 6.    | 21D55202                            | Embedded Programming Lab                                                                                                            | PC       | 0        | 0      | 4        | 2      |
| 7.    | 21D55203                            | Technical seminar                                                                                                                   | PR       | 0        | 0      | 4        | 2      |
| 8.    | 21DAC201a<br>21DAC201b<br>21DAC201c | Audit Course – II<br>Pedagogy Studies<br>Stress Management for Yoga<br>Personality Development through Life<br>Enlightenment Skills | AC       | 2        | 0      | 0        | 0      |
|       | <b>I</b>                            | Total                                                                                                                               |          | <u> </u> | 1      | <u> </u> | 18     |



# M.TECH. IN EMBEDDED SYSTEMS

# **COURSE STRUCTURE & SYLLABI**

# **SEMSTER - III**

| S.No. | Course                              | Course Name                                                                                                 | Categor | Ho | Hours per |    | Hours per |  | Hours per |  | Hours per |  | Credits |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|---------|----|-----------|----|-----------|--|-----------|--|-----------|--|---------|
|       | codes                               |                                                                                                             | У       |    | Т         | Р  |           |  |           |  |           |  |         |
| 1.    | 21D06301a<br>21D06301c<br>21D55301a | <b>Program Elective – V</b><br>Embedded Systems Protocols<br>Communication Buses and Interfaces<br>Robotics | PE      | 3  | 0         | 0  | 3         |  |           |  |           |  |         |
| 2.    | 21DOE301b<br>21DOE301c<br>21DOE301e | <b>Open Elective</b><br>Industrial Safety<br>Business Analytics<br>Waste to Energy                          | OE      | 3  | 0         | 0  | 3         |  |           |  |           |  |         |
| 3.    | 21D55302                            | Dissertation Phase – I                                                                                      | PR      | 0  | 0         | 20 | 10        |  |           |  |           |  |         |
| 4.    | 21D553013                           | Co-curricular Activities                                                                                    |         |    |           |    | 2         |  |           |  |           |  |         |
|       |                                     | Total                                                                                                       |         |    |           |    | 18        |  |           |  |           |  |         |

## **SEMESTER - IV**

| S.No. | Course   | Course Name             | Category | Hours per week |   | Hours per week |    | Credits |
|-------|----------|-------------------------|----------|----------------|---|----------------|----|---------|
|       | codes    |                         |          | L              | Т | P              |    |         |
| 1.    | 21D55401 | Dissertation Phase – II | PR       | 0              | 0 | 32             | 16 |         |
|       |          | Total                   |          |                |   |                | 16 |         |



| Course Code                  | MICROCONTROLLERS AND PROGRAMMABLE                                    | L      | T     | P      | C    |
|------------------------------|----------------------------------------------------------------------|--------|-------|--------|------|
| 21D06102                     | DIGITAL SIGNAL PROCESSORS                                            | 3      | 0     | 0      | 3    |
|                              | Semester                                                             |        |       | Ι      |      |
|                              |                                                                      |        |       |        |      |
| <b>Course Objectiv</b>       |                                                                      |        |       |        |      |
|                              | about ARM Microcontroller architectural features                     |        |       |        |      |
|                              | stand the ARM 'C' Programming for various applications               |        |       |        |      |
| <ul> <li>To study</li> </ul> | the DSP processor fundamentals and its development tools             |        |       |        |      |
| <b>Course Outcome</b>        | es (CO): Student will be able to                                     |        |       |        |      |
| • Learn ab                   | out ARM Microcontroller architectural features                       |        |       |        |      |
| • Understa                   | nd the ARM 'C' Programming for various applications                  |        |       |        |      |
| • Study the                  | DSP processor fundamentals and its development tools                 |        |       |        |      |
| UNIT - I                     |                                                                      | Le     | cture | Hrs:   |      |
|                              | x Processor: Applications, Programming model – Registers, Op         | berat  | ion - | mod    | les, |
|                              | Interrupts, Reset Sequence, Instruction Set (ARM and T               |        |       |        |      |
|                              | age, Memory Maps, Memory Access Attributes, Permissions, Bit-        |        |       |        |      |
|                              | cclusive Transfers. Pipeline, Bus Interfaces.                        |        | •     |        |      |
| UNIT - II                    |                                                                      | Le     | cture | Hrs:   |      |
| Exceptions, Typ              | es, Priority, Vector Tables, Interrupt Inputs and Pending            | beha   | viou  | r, Fa  | ault |
| Exceptions, Sup              | ervisor and Pendable Service Call, Nested Vectored Interrupt (       | Cont   | rolle | r, Ba  | isic |
| Configuration, S             | STICK Timer, Interrupt Sequences, Exits, Tail Chaining, Interrup     | t La   | tency |        |      |
| UNIT - III                   |                                                                      | Le     | cture | Hrs:   |      |
| LPC 17xx microo              | controller- Internal memory, GPIOs, Timers, ADC, UART and other      | er sei | rial  |        |      |
| interfaces, PWM              | RTC, WDT.                                                            |        |       |        |      |
| UNIT - IV                    |                                                                      | Le     | cture | Hrs:   |      |
| Programmable D               | SP (P-DSP) Processors: Harvard architecture, Multi port memory, a    | archi  | tectu | ral    |      |
| structure of P-DS            | P- MAC unit, Barrel shifters, Introduction to TI DSP processor fan   | nily   |       |        |      |
| UNIT - V                     |                                                                      | Le     | cture | Hrs:   |      |
| VLIW architectu              | e and TMS320C6000 series, architecture study, data paths, cross p    | aths   | ,     |        |      |
| Introduction to              | Instruction level architecture of C6000 family, Assembly Instruction | ructi  | ons   | mem    | ory  |
| addressing, for an           | ithmetic, logical operations.                                        |        |       |        |      |
| Textbooks:                   |                                                                      |        |       |        |      |
| 1. Joseph Yiu, "T            | he definitive guide to ARM Cortex-M3", Elsevier, 2nd Edition         |        |       |        |      |
|                              | B. and Bhaskar M. "Digital Signal Processors: Architecture, Progra   | amm    | ing a | nd     |      |
| Applications", T             | MH, 2 <sup>nd</sup> Edition.                                         |        |       |        |      |
| <b>Reference Books</b>       |                                                                      |        |       |        |      |
| 1. Sloss Andrew              | N, Symes Dominic, Wright Chris, "ARM System Developer's Guid         | le: D  | esign | ning a | ınd  |
|                              | rgan Kaufman Publication.                                            |        |       | -      |      |
|                              | ARM System-on-Chip Architecture", Pearson Education                  |        |       |        |      |
|                              | nd Tony Givargis, "Embedded System Design", Wiley                    |        |       |        |      |
|                              | rences and user manuals on www.arm.com, NXP Semiconductor            |        |       |        |      |
| www.nxp.com ar               | d Texas Instruments <u>www.ti.com</u>                                |        |       |        |      |



## M.TECH. IN EMBEDDED SYSTEMS

| A4D0/404                                                                                                                                                                                                                                                                                                                                                                      | DIGITAL SYSTEM DESIGN with PLDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                  | Т                                                                                                    | Р                                                            | С        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|
| 21D06101                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                  | 0                                                                                                    | 0                                                            | 3        |
|                                                                                                                                                                                                                                                                                                                                                                               | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    | ]                                                                                                    | [                                                            |          |
| Course Object                                                                                                                                                                                                                                                                                                                                                                 | waga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |                                                                                                      |                                                              |          |
| Course Object                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                  |                                                                                                      |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               | erstand an overview of system design approach using programmable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | logic                                                                              | caev                                                                                                 | ices.                                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                               | exposed to the various architectural features of CPLDS and FPGAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 1.                                                                               |                                                                                                      |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               | the methods and techniques of CPLD & FPGA design with EDA to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |                                                                                                      |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               | n software tools used for design process with the help of case studies.<br>nes (CO): Student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                  |                                                                                                      |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                                      | -                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                               | and an overview of system design approach using programmable log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gic de                                                                             | evice                                                                                                | s.                                                           |          |
| •                                                                                                                                                                                                                                                                                                                                                                             | osed to the various architectural features of CPLDS and FPGAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                                      |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               | he methods and techniques of CPLD & FPGA design with EDA tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>S</b> .                                                                         |                                                                                                      |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               | oftware tools used for design process with the help of case studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | т                                                                                  |                                                                                                      | <b>T</b> T                                                   |          |
| UNIT - I                                                                                                                                                                                                                                                                                                                                                                      | Laria Daviana The concert of account which Laria David David                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    | ture                                                                                                 |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               | <b>Logic Devices:</b> The concept of programmable Logic Devices, SPLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                                                                                                      |                                                              | es,      |
|                                                                                                                                                                                                                                                                                                                                                                               | AL devices, CPLD-Architecture, Xilinx CPLDs- Altera CPLDs, FPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                                      |                                                              |          |
| •••                                                                                                                                                                                                                                                                                                                                                                           | hitecture, CLB and slice Stratix LAB and ALM-RAM Blocks, Differ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ent                                                                                | ypes                                                                                                 | AIIII                                                        | IX       |
| UNIT - II                                                                                                                                                                                                                                                                                                                                                                     | ocks, Clock Management, I/O standards, Additional features.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lac                                                                                | ture                                                                                                 | Ura                                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                               | erivation of Clocked Sequential Circuits with State Graphs and 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |                                                                                                      |                                                              |          |
| ·                                                                                                                                                                                                                                                                                                                                                                             | <i>i</i> checker, Analysis by signal tracing and timing charts-state tables ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                                      |                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                               | for sequential circuits, Design of a sequence detector, More Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |                                                                                                      | -                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                               | elines for construction of state graphs, serial data conversion, Alphan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |                                                                                                      | ate                                                          |          |
| graph notation                                                                                                                                                                                                                                                                                                                                                                | sines for construction of state graphs, serial data conversion, raphan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lume                                                                               |                                                                                                      | are                                                          |          |
| UNIT - III                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                                      |                                                              |          |
| N / I N H H H H H H H                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lec                                                                                | ture                                                                                                 | Hrs:                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                               | uit Design: Design procedure for sequential circuits-design example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    | ture<br>de                                                                                           | Hrs:                                                         |          |
| Sequential circ                                                                                                                                                                                                                                                                                                                                                               | <b>uit Design:</b> Design procedure for sequential circuits-design example<br>on of Iterative circuits. Design of a comparator. Design of sequential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Co                                                                               | de                                                                                                   |                                                              |          |
| Sequential circ<br>converter, Desig                                                                                                                                                                                                                                                                                                                                           | n of Iterative circuits, Design of a comparator, Design of sequential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , Co<br>circu                                                                      | de<br>iits u                                                                                         | sing                                                         |          |
| Sequential circ<br>converter, Desig<br>ROMs and PLA                                                                                                                                                                                                                                                                                                                           | n of Iterative circuits, Design of a comparator, Design of sequential s, Sequential circuit design using CPLDs, Sequential circuit design using the sequence of the sequence o | , Co<br>circu                                                                      | de<br>iits u                                                                                         | sing                                                         |          |
| Sequential circ<br>converter, Desig<br>ROMs and PLA                                                                                                                                                                                                                                                                                                                           | n of Iterative circuits, Design of a comparator, Design of sequential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e, Coo<br>circu<br>ising                                                           | de<br>iits u<br>; FPC                                                                                | sing                                                         |          |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV                                                                                                                                                                                                                                                                                            | n of Iterative circuits, Design of a comparator, Design of sequential<br>s, Sequential circuit design using CPLDs, Sequential circuit design using of Sequential circuits, Overview of computer Aided Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | circu<br>circu<br>using                                                            | de<br>iits u<br>FPC                                                                                  | sing<br>3As,<br>Hrs:                                         |          |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling                                                                                                                                                                                                                                                                          | n of Iterative circuits, Design of a comparator, Design of sequential s, Sequential circuit design using CPLDs, Sequential circuit design using the sequence of the sequence o | e, Coo<br>circu<br>ising<br>Lec<br>& re                                            | de<br>iits u<br>FPC<br>ture                                                                          | sing<br>3As,<br><u>Hrs:</u><br>lancy                         |          |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence                                                                                                                                                                                                                                                     | n of Iterative circuits, Design of a comparator, Design of sequential<br>s, Sequential circuit design using CPLDs, Sequential circuit design using<br>testing of Sequential circuits, Overview of computer Aided Design<br>and Test Pattern Generation: Logic Fault Model, Fault detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e, Coo<br>circu<br>ising<br>Lec<br>& re<br>nultip                                  | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole St                                                      | sing<br>3As,<br><u>Hrs:</u><br>lancy<br>tuck                 |          |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalent<br>Fault models, B                                                                                                                                                                                                                                   | and Test Pattern Generation: Logic Fault Model, Fault detection<br>ce and fault location, Fault dominance, Single stuck at fault model, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c, Coo<br>circu<br>using<br>Lec<br>& re<br>nultip                                  | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole St<br>ional                                             | sing<br>3As,<br><u>Hrs:</u><br>lancy<br>tuck                 |          |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s                                                                                                                                                                                                               | and Test Pattern Generation: Logic Fault Model, Fault detection<br>ce and fault location, Fault dominance, Single stuck at fault model, rault diagnosis of combinational circuits by com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , Coo<br>circu<br>using<br>Lec<br>& re<br>nultip<br>venti<br>thm,                  | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole St<br>ional<br>Test                                     | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck                 | at       |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.                                                                                                                                                                                 | an of Iterative circuits, Design of a comparator, Design of sequential<br>s, Sequential circuit design using CPLDs, Sequential circuit design using<br>testing of Sequential circuits, Overview of computer Aided Design<br>and Test Pattern Generation: Logic Fault Model, Fault detection<br>ce and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algorit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , Coo<br>circu<br>using<br>Lec<br>& re<br>nultip<br>venti<br>thm,                  | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole St<br>ional<br>Test                                     | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck                 | at       |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalent<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V                                                                                                                                                                      | and Test Pattern Generation: Logic Fault Model, Fault detection<br>ea and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , Coo<br>circu<br>ising<br>Lec<br>& re<br>nultip<br>venti<br>thm,<br>and t         | de<br>its u<br>FPC<br>cture<br>cdunc<br>ole St<br>ional<br>Test<br>test b                            | sing<br>3As,<br>Hrs:<br>lancy<br>tuck<br>bridgi<br>Hrs:      | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosit                                                                                                                                                  | an of Iterative circuits, Design of a comparator, Design of sequential<br>s, Sequential circuit design using CPLDs, Sequential circuit design using<br>testing of Sequential circuits, Overview of computer Aided Design<br>and Test Pattern Generation: Logic Fault Model, Fault detection<br>be and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis<br>s in Sequential Circuits: Circuit Test Approach, Transition check A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k, Coo<br>circu<br>using<br>Lec<br>& re<br>nultip<br>venti<br>thm,<br>and t<br>Lec | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosi<br>identification ar                                                                                                                              | and Test Pattern Generation: Logic Fault Model, Fault detection<br>ea and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k, Coo<br>circu<br>using<br>Lec<br>& re<br>nultip<br>venti<br>thm,<br>and t<br>Lec | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosic<br>identification ar<br>experiment.                                                                                                              | an of Iterative circuits, Design of a comparator, Design of sequential<br>s, Sequential circuit design using CPLDs, Sequential circuit design using<br>testing of Sequential circuits, Overview of computer Aided Design<br>and Test Pattern Generation: Logic Fault Model, Fault detection<br>be and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis<br>s in Sequential Circuits: Circuit Test Approach, Transition check A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k, Coo<br>circu<br>using<br>Lec<br>& re<br>nultip<br>venti<br>thm,<br>and t<br>Lec | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalent<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosis<br>identification an<br>experiment.<br>Textbooks:                                                                                                 | and Test Pattern Generation: Logic Fault Model, Fault detection<br>ea and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis<br>is in Sequential Circuits: Circuit Test Approach, Transition check A<br>d fault detection experiment, Machine identification, Design of fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | & re<br>ultip<br>venti<br>thm,<br>and t<br>Lec                                     | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalent<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnost<br>identification ar<br>experiment.<br>Textbooks:<br>1.Digital Electro                                                                             | an of Iterative circuits, Design of a comparator, Design of sequential<br>s, Sequential circuit design using CPLDs, Sequential circuit design<br>testing of Sequential circuits, Overview of computer Aided Design<br>and Test Pattern Generation: Logic Fault Model, Fault detection<br>be and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis<br>is in Sequential Circuits: Circuit Test Approach, Transition check A<br>d fault detection experiment, Machine identification, Design of fault<br>ponics and design with VHDL- Volnei A. Pedroni, Elsevier publicatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | & re<br>ultip<br>venti<br>thm,<br>and t<br>Lec                                     | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosi<br>identification ar<br>experiment.<br>Textbooks:<br>1.Digital Electro<br>2. Fundamental                                                          | an of Iterative circuits, Design of a comparator, Design of sequential<br>s, Sequential circuit design using CPLDs, Sequential circuit design<br>testing of Sequential circuits, Overview of computer Aided Design<br>and Test Pattern Generation: Logic Fault Model, Fault detection<br>ce and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algori<br>gorithm, Random testing, transition count testing, signature analysis<br>s in Sequential Circuits: Circuit Test Approach, Transition check A<br>d fault detection experiment, Machine identification, Design of fault<br>ponics and design with VHDL- Volnei A. Pedroni, Elsevier publicatio<br>s of Logic Design-Charles H.Roth,Jr5th Ed.,Cengage Learning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | & re<br>ultip<br>venti<br>thm,<br>and t<br>Lec                                     | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosis<br>identification ar<br>experiment.<br>Textbooks:<br>1.Digital Electro<br>2. Fundamentals<br>3. Logic Design                                     | and Test Pattern Generation: Logic Fault Model, Fault detection<br>and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis<br>is in Sequential Circuits: Circuit Test Approach, Transition check A<br>d fault detection experiment, Machine identification, Design of fault<br>ponics and design with VHDL- Volnei A. Pedroni, Elsevier publicatio<br>s of Logic Design-Charles H.Roth,Jr5th Ed.,Cengage Learning.<br>Theory-N.N.Biswas,PHI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | & re<br>ultip<br>venti<br>thm,<br>and t<br>Lec                                     | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalence<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosis<br>identification ar<br>experiment.<br>Textbooks:<br>1.Digital Electro<br>2. Fundamentals<br>3. Logic Design<br>Reference Boo                    | and Test Pattern Generation: Logic Fault Model, Fault detection<br>and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis<br>is in Sequential Circuits: Circuit Test Approach, Transition check A<br>d fault detection experiment, Machine identification, Design of fault<br>ponics and design with VHDL- Volnei A. Pedroni, Elsevier publicatio<br>s of Logic Design-Charles H.Roth,Jr5th Ed.,Cengage Learning.<br>Theory-N.N.Biswas,PHI.<br>s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | & re<br>ultip<br>venti<br>thm,<br>and t<br>Lec                                     | de<br>iits u<br>FPC<br>cture<br>cdunc<br>ole Si<br>ional<br>Test<br>test b                           | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |
| Sequential circ<br>converter, Desig<br>ROMs and PLA<br>Simulation and<br>UNIT - IV<br>Fault Modeling<br>Fault equivalent<br>Fault models, B<br>methods, path s<br>algorithms-D al<br>faults.<br>UNIT - V<br>Fault Diagnosi<br>identification ar<br>experiment.<br>Textbooks:<br>1.Digital Electro<br>2. Fundamentals<br>3. Logic Design<br>Reference Bool<br>1. Digital Circu | and Test Pattern Generation: Logic Fault Model, Fault detection<br>and fault location, Fault dominance, Single stuck at fault model, m<br>ridging Fault model.Fault diagnosis of combinational circuits by con<br>ensitization techniques, Boolean difference method, KOHAVI algoring<br>gorithm, Random testing, transition count testing, signature analysis<br>is in Sequential Circuits: Circuit Test Approach, Transition check A<br>d fault detection experiment, Machine identification, Design of fault<br>ponics and design with VHDL- Volnei A. Pedroni, Elsevier publicatio<br>s of Logic Design-Charles H.Roth,Jr5th Ed.,Cengage Learning.<br>Theory-N.N.Biswas,PHI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | & re<br>ultip<br>venti<br>thm,<br>and t<br>Lec<br>ppro                             | de<br>iits u<br>FPC<br>cture<br>dunc<br>ble Si<br>ional<br>Test<br>test b<br>cture<br>ach,<br>ection | sing<br>FAs,<br><u>Hrs:</u><br>lancy<br>tuck<br>tuck<br>tuck | at<br>ng |



| Course Code        | ADVANCED MICROCONTROLLERS                                               | L     | Т              | Р        | С   |
|--------------------|-------------------------------------------------------------------------|-------|----------------|----------|-----|
| 21D55101a          | Program Elective – I                                                    | 3     | 0              | 0        | 3   |
|                    | Semester                                                                |       | ]              | [        |     |
|                    |                                                                         |       |                |          |     |
| Course Objectiv    |                                                                         |       |                |          |     |
| ·                  | re the architecture and instruction set of ARM processor.               |       |                |          |     |
| -                  | de a comprehensive understanding of various programs of ARM Pro         | oces  | sors.          |          |     |
|                    | the programming on ARM Cortex M.                                        |       |                |          |     |
|                    | es (CO): Student will be able to                                        |       |                |          |     |
| ▲                  | the selection criteria of ARM processors by understanding the func      | tion  | al lev         | el tra   | ade |
| off issues         |                                                                         |       |                |          |     |
| -                  | the ARM development towards the functional capabilities.                |       |                |          |     |
| ·                  | to work with ASM level program using the instruction set.               |       |                |          |     |
|                    | nd the architecture of ARM Cortex M and programming on it.              | -     |                |          |     |
| UNIT - I           |                                                                         | Lee   | cture          | Hrs:     |     |
| ARM Embedde        |                                                                         |       |                |          |     |
|                    | osophy, ARM design philosophy, Embedded system hardware, Em             | beda  | led sy         | /sten    | 1   |
| software.          |                                                                         |       |                |          |     |
| ARM Processor      |                                                                         | т ња  | <b>a b</b> 1 a | Car      |     |
| <u> </u>           | the Program Status Register, Pipeline, Exceptions Interrupts and Vect   | or I  | able,          | Core     | 3   |
|                    | itecture Revisions, ARM Processor Families.<br>ARM Processors           |       |                |          |     |
|                    | a architecture, Programmer's model- operation modes and states, re-     | ariat | <b>010</b>     | naai     | 1   |
|                    | point registers, Behaviour of the application program status register   | •     |                | <b>•</b> |     |
| 0                  | atus flag, GE bits, Memory system-Memory system features, memor         |       |                |          | gei |
|                    | y protection unit (MPU), Exceptions and Interrupts-what are except      |       |                |          |     |
|                    | t controller(NVIC), vector table, Fault handling, System control blo    |       |                |          |     |
| Debug, Reset and   |                                                                         | UN (  | SCD,           | ,        |     |
| UNIT - II          |                                                                         | Ιe    | cture          | Hree     |     |
|                    | the Arm Instruction Set                                                 | LU    | cture          | 1115.    |     |
|                    | instructions, branch instructions, load-store instructions, software in | terri | int            |          |     |
|                    | gram status register instructions, loading constants, ARMv5E extens     |       | -              |          |     |
| Conditional exec   |                                                                         | 10113 | ,              |          |     |
|                    | the Thumb Instruction Set                                               |       |                |          |     |
|                    | Usage, ARM-Thumb Interworking, Other Branch Instructions, Data          | Pro   | cessi          | nø       |     |
|                    | gle-Register Load-Store Instructions, Multiple-Register Load-Store      |       |                |          |     |
|                    | s, Software Interrupt Instruction.                                      | 11150 | uenc           | 110,     |     |
| UNIT - III         | ······································                                  | Le    | cture          | Hrs:     |     |
|                    | s of ARM Cortex M Processors                                            |       |                |          |     |
|                    | ion about Cortex-M3 and cortex M4 processors-Processor type, pro        | cess  | or             |          |     |
|                    | ruction set, block diagram, memory system, interrupt and exception      |       |                |          |     |
|                    | ortex-M3 and Cortex-M4 Processors-Performance, code density, low        |       |                |          |     |
|                    | memory protection unit, interrupt handling, OS support and system       |       |                | ures     | ,   |
|                    | fic features, Ease of use, Debug support, Scalability, Compatibility.   |       |                |          |     |
| UNIT - IV          |                                                                         | Lee   | cture          | Hrs:     |     |
| Instruction SET    | of ARM Cortex M                                                         |       |                |          |     |
|                    | e instruction set in ARM Cortex-M Processors, Comparison of the         | instr | uctio          | n set    | in  |
| _                  | Processors, understanding the assembly language syntax, Use of a s      |       |                |          |     |
| instructions, Unit | fied assembly Language (UAL), Instruction set, Cortex-M4-specific       | ins   | tructi         | ons,     |     |



### **M.TECH. IN EMBEDDED SYSTEMS**

### **COURSE STRUCTURE & SYLLABI**

Barrel shifter, Accessing special instructions and special registers in Programming.

| NIT - V                        | Lecture Hrs:                      |
|--------------------------------|-----------------------------------|
| loating Point C                |                                   |
| bout Floating P                | overview, FP registers overview,  |
| PACR register,                 | CR, FPU-> FPCAR, FPU-             |
|                                | DSP Applications: DSP on a        |
|                                | e for the CortexM4-Biquad filter, |
| ast Fourier trans              |                                   |
| extbooks:                      |                                   |
| ARM System                     | tem Software by Andrew N.         |
| LOSS, Dominic                  |                                   |
| . The Definitive               | ssors by Joseph Yiu, Elsevier     |
| ublications, 3 <sup>rd</sup> E |                                   |
| eference Book                  |                                   |
| eference Book                  | 1 2000                            |

ARM System on Chip Architectures – Steve Furber, Edison Wesley, 2000.
 ARM Architecture Reference Manual – David Seal, Edison Wesley, 2000.



| Course Code             | CMOS DIGITAL IC DESIGN                                                                                                           | L     | Т      | Р      | С               |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|-----------------|
| 21D57102                | <b>Program Elective – I</b>                                                                                                      | 3     | 0      | 0      | 3               |
|                         | Semester                                                                                                                         |       |        | I      |                 |
|                         |                                                                                                                                  |       |        |        |                 |
| Course Objectiv         |                                                                                                                                  |       |        |        |                 |
|                         | stand the fundamental properties of digital Integrated circuits using                                                            |       |        |        |                 |
| -                       | s and to develop skills for various logic circuits using CMOS related                                                            | 1 des | sign s | styles |                 |
|                         | se also involves analysis of performance metrics.                                                                                |       |        |        |                 |
|                         | fundamentals of CMOS Digital integrated circuit design such a                                                                    |       |        | tance  | of              |
|                         | ogic, Combinational MOS logic circuits and Sequential MOS logic                                                                  |       |        |        |                 |
|                         | the fundamentals of Dynamic logic circuits and basic semicone                                                                    |       |        | iemoi  | ies             |
|                         | e the basics for the design of high performance digital integrated cir                                                           | cuits | 5.     |        |                 |
|                         | es (CO): Student will be able to                                                                                                 |       |        |        |                 |
|                         | ate advanced knowledge in Static and dynamic characteristics of Cl                                                               | MOS   | 5,     |        |                 |
|                         | Delay and Power of Adders circuits.                                                                                              |       |        |        |                 |
|                         | ifferent semiconductor memories.                                                                                                 |       |        |        |                 |
| • ·                     | design and implement combinational and sequential MOS logic circ                                                                 |       |        |        |                 |
| •                       | complex engineering problems critically in the domain of digitation                                                              | al IO | C de   | sign   | for             |
|                         | g research.                                                                                                                      |       |        |        |                 |
|                         | ineering problems for feasible and optimal solutions in the core are                                                             |       |        |        | 5               |
| UNIT - I                |                                                                                                                                  |       |        | Hrs:   |                 |
|                         | eudo NMOS Logic: Inverter, Inverter threshold voltage, Output hig                                                                |       |        |        |                 |
| -                       | age, Gain at gate threshold voltage, Transient response, Rise time, F                                                            | all t | ime,   | Pseu   | do              |
|                         | es, Transistor equivalency, CMOS Inverter logic.                                                                                 | Ŧ     |        |        |                 |
| UNIT - II               |                                                                                                                                  |       |        | Hrs:   |                 |
|                         | MOS Logic Circuits: MOS logic circuits with NMOS loads, Primi                                                                    |       |        |        |                 |
|                         | AND gate, Complex Logic circuits design-Realizing Boolean e                                                                      |       |        |        |                 |
|                         | I CMOS gates, AOI and OIA gates, CMOS full adder, CMOS tra                                                                       | ansii | nssic  | on ga  | les,            |
| UNIT - III              | Transmission gates.                                                                                                              | La    | atura  | Hrs:   |                 |
|                         | <b>S Logic Circuits:</b> Behavior of bistable elements, SR Latch, Clock                                                          |       |        |        | lin             |
|                         | OS D latch and edge triggered flip-flop                                                                                          | leu I | aten   | anu    | пр              |
| UNIT - IV               |                                                                                                                                  | La    |        | Hrs:   |                 |
|                         | Cinopita Dacia minainla Valtaga Dactatranning Synchronou                                                                         |       |        |        | 0.00            |
|                         | <b>Circuits:</b> Basic principle, Voltage Bootstrapping, Synchronou<br>s, Dynamic CMOS transmission gate logic, High performance |       |        |        |                 |
| circuits.               | s, Dynamic CMOS transmission gate logic, fingh performance i                                                                     | Dyn   | anne   | CIVI   | 05              |
| UNIT - V                |                                                                                                                                  | Ιa    | otura  | Hrs:   |                 |
|                         | Memories:Types, RAM array organization, DRAM – Types, Op                                                                         |       |        |        | ane             |
|                         | M cell and refresh operation, SRAM operation Leakage currents                                                                    |       |        |        | •               |
|                         | OR flash and NAND flash.                                                                                                         | 111 ) | 51171  |        | 115,            |
| Textbooks:              |                                                                                                                                  |       |        |        |                 |
|                         | David Harris, "CMOS VLSI Design: A Circuits and Systems                                                                          | Pers  | spect  | ive".  | 4 <sup>th</sup> |
| Edition, Pear           | · · ·                                                                                                                            |       | r      | ,      |                 |
|                         | rated Circuit Design – Ken Martin, Oxford University Press, 2011.                                                                |       |        |        |                 |
| 0                       | ital Integrated Circuits Analysis and Design – Sung-Mo Kang,                                                                     |       | uf L   | ebleb  | ici,            |
| TMH, 3 <sup>rd</sup> Ed |                                                                                                                                  |       |        |        | ,               |
| <b>Reference Book</b>   |                                                                                                                                  |       |        |        |                 |



# M.TECH. IN EMBEDDED SYSTEMS

- 1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRC Press, 2011
- 2. Digital Integrated Circuits A Design Perspective, Jan M.Rabaey, AnanthaChandrakasan, Borivoje Nikolic, 2ndEdition, PHI.



| Course Code<br>21D06103a | ADVANCED COMPUTER ARCHITECTURES<br>Program Elective – I                                                                            | L T<br>3 0 | P C<br>0 3 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 21D00105a                | Semester                                                                                                                           |            | 0   3<br>I |
|                          | Semester                                                                                                                           |            | 1          |
| Course Objectiv          | 7051                                                                                                                               |            |            |
| × *                      |                                                                                                                                    | aluding    | mamory     |
|                          | the instruction set architectures from a design perspective, in<br>ng, operands, and control flow.                                 | iciuding   | memory     |
|                          |                                                                                                                                    | m out      | of order   |
|                          | rstand the advanced concepts such as instruction level parallelis<br>n, chip-multiprocessing and the related issues of data hazard |            |            |
|                          | e prediction.                                                                                                                      | is, branc  | in costs,  |
|                          | •                                                                                                                                  |            |            |
| •                        | the multiprocessor and parallel processing architectures.                                                                          |            |            |
|                          | about the organization and design of contemporary processor archi                                                                  | tectures.  |            |
|                          | es (CO): Student will be able to                                                                                                   |            |            |
|                          | ne instruction set architectures from a design perspective, in                                                                     | cluding    | memory     |
|                          | ng, operands, and control flow.                                                                                                    |            |            |
|                          | nd the advanced concepts such as instruction level paralleli                                                                       |            |            |
|                          | n, chip-multiprocessing and the related issues of data hazard                                                                      | ds, branc  | h costs,   |
|                          | e prediction.                                                                                                                      |            |            |
| •                        | e multiprocessor and parallel processing architectures.                                                                            |            |            |
|                          | out the organization and design of contemporary processor architec                                                                 |            |            |
| UNIT - I                 |                                                                                                                                    | Lecture    | Hrs:       |
|                          | f Computer Design                                                                                                                  |            |            |
|                          | Computer design, Changing faces of computing and task of compu                                                                     |            |            |
|                          | ls, Cost price and their trends, measuring and reporting performanc                                                                | e, quantit | ative      |
| · ·                      | nputer design, Amdahl's law.                                                                                                       |            |            |
|                          | inciples and examples- Introduction, classifying instruction set- me                                                               | mory add   | Iressing-  |
|                          | operands, operations in the instruction set.                                                                                       | 1          |            |
| UNIT - II                |                                                                                                                                    | Lecture    | Hrs:       |
| Pipelines                |                                                                                                                                    |            |            |
|                          | ic RISC instruction set ,Simple implementation of RISC instruction                                                                 |            |            |
|                          | r RISC processor, Basic performance issues in pipelining, Pipeline                                                                 | hazards,   |            |
|                          | e branch penalties.                                                                                                                |            |            |
| Memory Hierar            | • 8                                                                                                                                |            | _          |
|                          | iew of fundamentals of cache, Cache performance, Reducing cache                                                                    | e miss per | nalty,     |
| Virtual memory.          |                                                                                                                                    |            |            |
| UNIT - III               |                                                                                                                                    | Lecture    | Hrs:       |
|                          | el Parallelism the Hardware Approach                                                                                               |            |            |
|                          | l parallelism, Dynamic scheduling, Dynamic scheduling using Tom                                                                    |            |            |
|                          | n prediction, high performance instruction delivery- hardware based                                                                | 1 speculat | ion.       |
| ILP Software A           |                                                                                                                                    |            |            |
|                          | evel techniques, static branch prediction, VLIW approach, Exploitin                                                                | ıg ILP,    |            |
|                          | mpile time, Cross cutting issues -Hardware verses Software.                                                                        | <b>T</b> . |            |
| UNIT - IV                |                                                                                                                                    | Lecture    | Hrs:       |
|                          | s and Thread Level Parallelism                                                                                                     |            |            |
|                          | and Thread level Parallelism- Introduction, Characteristics of appli                                                               |            |            |
| •                        | d memory architecture, Distributed shared – memory architecture, S                                                                 |            |            |
| UNIT - V                 |                                                                                                                                    | Lecture    | Hrs:       |
| Inter Connection         | n and Networks                                                                                                                     |            |            |
|                          |                                                                                                                                    |            |            |



### **M.TECH. IN EMBEDDED SYSTEMS**

### **COURSE STRUCTURE & SYLLABI**

Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters.

### **Intel Architecture**

Intel IA- 64 ILP in embedded and mobile markets Fallacies and pit falls.

#### **Textbooks:**

1. John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative Approach, 3rd Edition, An Imprint of Elsevier.

#### **Reference Books:**

1. John P. Shen and Miikko H. Lipasti, Modern Processor Design : Fundamentals of Super Scalar Processors

2. Computer Architecture and Parallel Processing ,Kai Hwang, Faye A.Brigs., MC Graw Hill.,

3. Advanced Computer Architecture - A Design Space Approach, DezsoSima, Terence Fountain, Peter Kacsuk ,Pearson Ed.,



|                                                                                                                                                                                                                                                                                             | EMBEDDED REAL TIME OPERATING SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                                | Т                                               | Р                            | С   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------|-----|
| 21D06203c                                                                                                                                                                                                                                                                                   | Program Elective – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                | 0                                               | 0                            | 3   |
|                                                                                                                                                                                                                                                                                             | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                 | Ι                            |     |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                 |                              |     |
| Course Object                                                                                                                                                                                                                                                                               | ives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                                 |                              |     |
| • To provide                                                                                                                                                                                                                                                                                | broad understanding of the requirements of Real Time Operating Sys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stems                                            | 5.                                              |                              |     |
| • To make th                                                                                                                                                                                                                                                                                | e student understand, applications of these Real Time features using of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | case                                             | studi                                           | ies.                         |     |
| • To use the r                                                                                                                                                                                                                                                                              | eal time operating system concepts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                 |                              |     |
| <b>Course Outcon</b>                                                                                                                                                                                                                                                                        | nes (CO): Student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                 |                              |     |
| • Acquire kn                                                                                                                                                                                                                                                                                | owledge on Real Time features of UNIX and LINUX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                                 |                              |     |
| • Understand                                                                                                                                                                                                                                                                                | the basic building blocks of Real Time Operating Systems in term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns of                                            | sch                                             | eduli                        | ng, |
|                                                                                                                                                                                                                                                                                             | tching and ISR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                 |                              | Ū   |
| • Understand                                                                                                                                                                                                                                                                                | on Real Time applications using Real Time Linux, ucos2, VX w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | orks                                             | , En                                            | nbed                         | ded |
| Linux.                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                 |                              |     |
| UNIT - I                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lec                                              | ture                                            | Hrs:                         |     |
| Introduction                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                 |                              |     |
| Introduction to                                                                                                                                                                                                                                                                             | UNIX/LINUX, Overview of Commands, File I/O,( open, create, clos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e, lse                                           | eek,                                            | read,                        |     |
|                                                                                                                                                                                                                                                                                             | Control ( fork, vfork, exit, wait, waitpid, exec).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                 |                              |     |
| UNIT - II                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lec                                              | ture                                            | Hrs:                         |     |
| <b>Real Time Ope</b>                                                                                                                                                                                                                                                                        | rating Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                 |                              |     |
| Brief History of                                                                                                                                                                                                                                                                            | OS, Defining RTOS, The Scheduler, Objects, Services, Characterist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ics o                                            | f RT                                            | OS,                          |     |
| Defining a Task                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                 |                              |     |
|                                                                                                                                                                                                                                                                                             | t, asks States and Scheduling, Task Operations, Structure, Synchroniz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zatio                                            | n,                                              |                              |     |
| Communication                                                                                                                                                                                                                                                                               | and Concurrency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | zatio                                            | n,                                              |                              |     |
| Defining Semap                                                                                                                                                                                                                                                                              | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                 | e,                           |     |
| Defining Seman<br>Operations and                                                                                                                                                                                                                                                            | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                 | e,                           |     |
| Defining Semap                                                                                                                                                                                                                                                                              | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt, St                                           | orag                                            | e,<br>Hrs:                   |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servio                                                                                                                                                                                                                           | and Concurrency.<br>phores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br>bes and I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt, St                                           | orag<br>ture                                    |                              |     |
| Defining Seman<br>Operations and<br><b>UNIT - III</b><br><b>Objects, Servio</b><br>Pipes, Event Re                                                                                                                                                                                          | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>Les and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I                                                                                                                                                                                                                                                                                                                                                                                           | nt, St                                           | orag<br>ture                                    |                              |     |
| Defining Seman<br>Operations and<br><b>UNIT - III</b><br><b>Objects, Servic</b><br>Pipes, Event Re<br>Concepts, I/O S                                                                                                                                                                       | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>Les and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I                                                                                                                                                                                                                                                                                                                                                                                           | nt, St<br>Lec<br>Basic                           | orag<br>ture<br>I/O                             | Hrs:                         |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servio<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV                                                                                                                                                                        | a and Concurrency.<br>phores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>res and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.                                                                                                                                                                                                                                                                                                                                                                            | nt, St<br>Lec<br>Basic                           | orag<br>ture<br>I/O                             |                              |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Service<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Int                                                                                                                                                    | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>Sees and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br><b>Serrupts and Timers</b>                                                                                                                                                                                                                                                                                                                                               | nt, St<br>Lec<br>Basic<br>Lec                    | orag<br>ture<br>I/O<br>ture                     | Hrs:<br>Hrs:                 |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inter<br>Exceptions, Inter                                                                                                                              | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>res and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br><b>rerrupts and Timers</b><br>errupts, Applications, Processing of Exceptions and Spurious Interrup                                                                                                                                                                                                                                                                       | nt, St<br>Lec<br>Basic<br>Lec<br>Dts, R          | orag<br>ture<br>I/O<br>ture                     | Hrs:<br>Hrs:<br>Fime         |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inte<br>Clocks, Program                                                                                                                                 | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>Sees and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br><b>Serrupts and Timers</b>                                                                                                                                                                                                                                                                                                                                               | nt, St<br>Lec<br>Basic<br>Lec<br>ots, R<br>, Ope | orag<br>ture<br>I/O<br>ture<br>ceal '           | Hrs:<br>Hrs:<br>Time<br>ons. |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Int<br>Clocks, Program<br>UNIT - V                                                                                                                      | and Concurrency.<br>whores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>Sees and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br><b>Serrupts and Timers</b><br>errupts, Applications, Processing of Exceptions and Spurious Interrupt<br>mable Timers, Timer Interrupt Service Routines (ISR), Soft Timers                                                                                                                                                                                                | nt, St<br>Lec<br>Basic<br>Lec<br>ots, R<br>, Ope | orag<br>ture<br>I/O<br>ture<br>ceal '           | Hrs:<br>Hrs:<br>Fime         |     |
| Defining Semaj<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Int<br>Clocks, Program<br>UNIT - V<br>Case Studies o                                                                                                    | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br>errupts and Timers<br>errupts, Applications, Processing of Exceptions and Spurious Interrup<br>mable Timers, Timer Interrupt Service Routines (ISR), Soft Timers<br>F RTOS                                                                                                                                                                                                                      | nt, St<br>Lec<br>Basic<br>Lec<br>ots, R<br>, Ope | orag<br>ture<br>I/O<br>ture<br>ceal '           | Hrs:<br>Hrs:<br>Time<br>ons. |     |
| Defining Semap<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inte<br>Clocks, Program<br>UNIT - V<br>Case Studies o<br>RT Linux, Micr                                                                                 | and Concurrency.<br>whores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>Sees and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br><b>Serrupts and Timers</b><br>errupts, Applications, Processing of Exceptions and Spurious Interrupt<br>mable Timers, Timer Interrupt Service Routines (ISR), Soft Timers                                                                                                                                                                                                | nt, St<br>Lec<br>Basic<br>Lec<br>ots, R<br>, Ope | orag<br>ture<br>I/O<br>ture<br>ceal '           | Hrs:<br>Hrs:<br>Time<br>ons. |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inte<br>Clocks, Program<br>UNIT - V<br>Case Studies o<br>RT Linux, Mice<br>Textbooks:                                                                   | and Concurrency.<br>whores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br><b>tes and I/O</b><br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br><b>terrupts and Timers</b><br>errupts, Applications, Processing of Exceptions and Spurious Interrup<br>mable Timers, Timer Interrupt Service Routines (ISR), Soft Timers<br><b>f RTOS</b><br>oC/OS-II, Vx Works, Embedded Linux, and Tiny OS.                                                                                                                             | nt, St<br>Lec<br>Basic<br>Lec<br>ots, R<br>, Ope | orag<br>ture<br>I/O<br>ture<br>ceal '           | Hrs:<br>Hrs:<br>Time<br>ons. |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inte<br>Clocks, Program<br>UNIT - V<br>Case Studies o<br>RT Linux, Mice<br>Textbooks:                                                                   | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br>errupts and Timers<br>errupts, Applications, Processing of Exceptions and Spurious Interrup<br>mable Timers, Timer Interrupt Service Routines (ISR), Soft Timers<br>F RTOS                                                                                                                                                                                                                      | nt, St<br>Lec<br>Basic<br>Lec<br>ots, R<br>, Ope | orag<br>ture<br>I/O<br>ture<br>ceal '           | Hrs:<br>Hrs:<br>Time<br>ons. |     |
| Defining Semaj<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inte<br>Clocks, Program<br>UNIT - V<br>Case Studies o<br>RT Linux, Mict<br>Textbooks:<br>1. Real Ti<br>Reference Boo                                    | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br>cerrupts and Timers<br>errupts and Timers<br>errupts, Applications, Processing of Exceptions and Spurious Interrup<br>nmable Timers, Timer Interrupt Service Routines (ISR), Soft Timers<br>f RTOS<br>oC/OS-II, Vx Works, Embedded Linux, and Tiny OS.<br>me Concepts for Embedded Systems – Qing Li, Elsevier, 2011.<br>ks:                                                                    | Lec<br>Lec<br>Lec<br>Dts, R<br>, Ope<br>Lec      | orag<br>I/O<br>ture<br>Ceal '<br>eratio<br>ture | Hrs:<br>Hrs:<br>Time<br>ons. |     |
| Defining Semap<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inte<br>Clocks, Program<br>UNIT - V<br>Case Studies o<br>RT Linux, Mice<br>Textbooks:<br>1. Real Ti<br>Reference Boo<br>1. Embedded S                   | and Concurrency.<br>whores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br>Use.<br>res and I/O<br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br>errupts and Timers<br>errupts, Applications, Processing of Exceptions and Spurious Interrupt<br>mable Timers, Timer Interrupt Service Routines (ISR), Soft Timers<br>F RTOS<br>oC/OS-II, Vx Works, Embedded Linux, and Tiny OS.<br>me Concepts for Embedded Systems – Qing Li, Elsevier, 2011.<br>ks:<br>ystems- Architecture, Programming and Design by Rajkamal,TMH, 2 | Lec<br>Lec<br>Lec<br>Dts, R<br>, Ope<br>Lec      | orag<br>I/O<br>ture<br>Ceal '<br>eratio<br>ture | Hrs:<br>Hrs:<br>Time<br>ons. |     |
| Defining Seman<br>Operations and<br>UNIT - III<br>Objects, Servic<br>Pipes, Event Re<br>Concepts, I/O S<br>UNIT - IV<br>Exceptions, Inte<br>Clocks, Program<br>UNIT - V<br>Case Studies o<br>RT Linux, Mict<br>Textbooks:<br>1. Real Ti<br>Reference Boo<br>1. Embedded S<br>2. Advanced UI | and Concurrency.<br>bhores, Operations and Use, Defining Message Queue, States, Conter<br>Use.<br>gisters, Signals, Other Building Blocks, Component Configuration, I<br>ubsystem.<br>cerrupts and Timers<br>errupts and Timers<br>errupts, Applications, Processing of Exceptions and Spurious Interrup<br>nmable Timers, Timer Interrupt Service Routines (ISR), Soft Timers<br>f RTOS<br>oC/OS-II, Vx Works, Embedded Linux, and Tiny OS.<br>me Concepts for Embedded Systems – Qing Li, Elsevier, 2011.<br>ks:                                                                    | Lec<br>Lec<br>Lec<br>Dts, R<br>, Ope<br>Lec      | orag<br>I/O<br>ture<br>Ceal '<br>eratio<br>ture | Hrs:<br>Hrs:<br>Time<br>ons. |     |



### M.TECH. IN EMBEDDED SYSTEMS

# **COURSE STRUCTURE & SYLLABI**

| Course Code      | ADVANCED COMPUTER NETWORKS                                         | L     | Т     | Р      | С   |
|------------------|--------------------------------------------------------------------|-------|-------|--------|-----|
| 21D55102a        | Program Elective – II                                              | 3     | 0     | 0      | 3   |
|                  | Semester                                                           |       |       | ſ      |     |
|                  |                                                                    |       |       |        |     |
| Course Objectiv  | /es:                                                               |       |       |        |     |
| To understar     | d various protocols in computer networks                           |       |       |        |     |
| • To learn abo   | ut congestion control and quality of service in computer networks  |       |       |        |     |
| • To study var   | ious aspects of adhoc wireless networks                            |       |       |        |     |
|                  | ious aspects of wireless sensor networks                           |       |       |        |     |
|                  |                                                                    |       |       |        |     |
|                  | es (CO): Student will be able to                                   |       |       |        |     |
|                  | various protocols in computer networks                             |       |       |        |     |
| • Learn about    | congestion control and quality of service in computer networks     |       |       |        |     |
| Study variou     | s aspects of adhoc wireless networks                               |       |       |        |     |
| Study variou     | s aspects of wireless sensor networks                              |       |       |        |     |
| UNIT - I         |                                                                    | Lee   | cture | Hrs:   |     |
| Wireless LANs    |                                                                    |       |       |        |     |
|                  | mparison, Characteristics, Access Control, IEEE 802.11 Project: An |       |       |        |     |
|                  | ressing Mechanism, Physical Layer, Bluetooth Architecture, B       |       |       |        |     |
|                  | K Services, IEEE Project 802.16, Cellular Telephony: operation, I  | IG,2  | G,30  | 5,4G,  | 5G  |
|                  | cs, GEO, MEO and LEO Satellites                                    | 1     |       |        |     |
| UNIT - II        |                                                                    | Lee   | cture | Hrs:   |     |
|                  | trol and Quality of Service                                        |       |       |        |     |
|                  | ngestion, Congestion Control, Quality of Service, Techniques to Im | •     | _     | »S,    |     |
| U U              | es, Differentiated Services, QoS in Switched Networks, Queue Man   | -     |       |        |     |
|                  | al, Drop front, Random drop, Active- early Random drop, Random     |       | •     |        | n.  |
| UNIT - III       |                                                                    | Lee   | cture | Hrs:   |     |
|                  | CLESS NETWORKS                                                     |       |       |        |     |
|                  | llular and Ad hoc Wireless Networks, Application of Ad Hoc Wi      |       |       |        |     |
|                  | be Wireless Networks, Medium Access Scheme, Routing, Multic        |       |       |        |     |
|                  | Pricing Scheme, Quality of Service Provisioning, Self-Organi       |       |       |        |     |
|                  | Service Discovery, Energy Management, Scalability, Deployment      | t Co  | nside | eratic | ns, |
| Ad Hoc Wireless  | Internet                                                           | Ŧ     |       | **     |     |
| UNIT - IV        |                                                                    | Lee   | cture | Hrs:   |     |
|                  | ce in Ad Hoc Wireless Networks                                     |       |       |        | •   |
|                  | al Time Traffic Support in Ad Hoc Wireless Networks, QoS Paran     |       |       |        |     |
|                  | rk, Issues and Challenges in providing QoS in Ad Hoc Win           |       |       |        |     |
|                  | QoS Solutions: MAC Layer Solutions, Cluster TDMA, IEEE 8           |       |       |        |     |
| -                | Solutions, QoS Routing Protocols, Ticket Based QoS Routing Pro     |       |       |        |     |
|                  | QoS routing protocol, Trigger Based Distributed QoS Routing        |       |       |        | -   |
|                  | Routing Protocol, Bandwidth QoS Routing Protocol, On Dema          |       |       |        | -   |
|                  | mand Link-State Multipath QoS Routing Protocol, Asynchronous       | s Slo | ot Al | locat  | ion |
| <b>.</b> .       | Frameworks for Ad Hoc Wireless Networks.                           | 1     |       |        |     |
| UNIT - V         |                                                                    | Lee   | cture | Hrs:   |     |
| Wireless Sensor  |                                                                    | _     |       |        |     |
| Introduction, Ap | plication of Sensor Network, Comparison with Ad hoc Wireless N     | Vetw  | orks  | , Iss  | ues |

Introduction, Application of Sensor Network, Comparison with Ad hoc Wireless Networks, Issues and challenges in Designing a Sensor Network, Sensor Network Architecture, Layer Architecture,



### M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

Cluster Architecture, Data Dissemination Flooding, Gossiping, Rumor Routing, Sequential Assignment Routing, Direct Diffusion, Sensor Protocols for Information via Negotiation, Cost-Field Approach, Geography Hash Table, Small Minimum Energy Communication Network, Data Gathering, Direct Transmission, Power Efficient Gathering for Sensor Information Systems, Binary Scheme, Chain Based Three-Level Scheme.

### **Textbooks:**

1.Ad Hoc Wireless Networks: Architectures and Protocols - C. Siva Ram Murthy and B.S.Manoj, 2004, PHI

2. Data Communications and Networking - B. A. Forouzan, 5th , 2013, TMH.

# **Reference Books:**

1. Data Communications and Computer Networks - Prakash C. Gupta, 2006, PHI.

2. Data and Computer Communications - William Stallings, 8th ed., 2007, PHI.



### M.TECH. IN EMBEDDED SYSTEMS

| Course Code          | SoC ARCHITECTURE                                                      | L      | Т      | Р           | C   |
|----------------------|-----------------------------------------------------------------------|--------|--------|-------------|-----|
| 21D06203a            | Program Elective – II                                                 | 3      | 0      | 0           | 3   |
|                      | Semester                                                              |        | Ι      |             |     |
|                      |                                                                       |        |        |             |     |
| Course Object        | ives:                                                                 |        |        |             |     |
| To und               | erstand the basics related to SoC architecture and different approact | hes re | elated | l to S      | oC  |
| Design               |                                                                       |        |        |             |     |
| To sele              | ct an appropriate robust processor for SoC Design                     |        |        |             |     |
| To sele              | ct an appropriate memory for SoC Design.                              |        |        |             |     |
| To real              | ize real time case studies                                            |        |        |             |     |
| Course Outcor        | nes (CO): Student will be able to                                     |        |        |             |     |
| Unders               | tand the basics related to SoC architecture and different approach    | les re | lated  | to S        | oC  |
| Design               |                                                                       |        |        |             |     |
| Select a             | in appropriated robust processor for SoC Design                       |        |        |             |     |
| Select a             | in appropriate memory for SoC Design.                                 |        |        |             |     |
| Realize              | real time case studies                                                |        |        |             |     |
| UNIT - I             |                                                                       | Lec    | ture I | Irs:        |     |
| Introduction to      | the System Approach: System Architecture, Components of the sys       | tem,   | Hard   | ware        |     |
| & Software, P        | rocessor Architectures, Memory & Addressing. System level interc      | onne   | ction  | , An        |     |
| approach for S       | OC Design, System Architecture and Complexity.                        |        |        |             |     |
| UNIT - II            |                                                                       | Lec    | ture H | Hrs:        |     |
| Processors: Intr     | oduction, Processor Selection for SOC, Basic concepts in Processo     | or Aro | chited | cture,      | ,   |
| Basic concept        | s in Processor Microarchitecture, Basic elements in Instruction har   | dling  | g. But | ffers:      |     |
| minimizing Pi        | peline Delays, Branches, More Robust Processors, Vector Pro           | cesso  | ors an | nd          |     |
| Vector Instru        | ction extensions, VLIW Processors, Superscalar Processors             |        |        |             |     |
| UNIT - III           |                                                                       |        | ture I | Irs:        |     |
| • •                  | for SOC: Overview: SOC external memory, SOC Internal Memory           |        |        |             |     |
|                      | nd Cache memory, Cache Organization, Cache data, Write Policies       |        |        |             | •   |
| ▲<br>▲               | ent at miss time, Other Types of Cache, Split – I, and D – Caches, I  |        | level  |             |     |
|                      | Memory System, Models of Simple Processor – memory interaction        |        |        |             |     |
| UNIT - IV            |                                                                       |        | ture I | Hrs:        |     |
|                      | ustomization and Configurability: Interconnect Architectures, Bus: I  |        |        |             |     |
|                      | SOC Standard Buses, Analytic Bus Models, Using the Bus model,         | Effe   | cts of | f Bus       |     |
|                      | d contention time.                                                    | _      |        |             |     |
|                      | ization: An overview, Customizing Instruction Processor,              |        |        |             |     |
|                      | Mapping design onto Reconfigurable devices, Instance-                 |        |        |             |     |
|                      | Soft Processor, Reconfiguration - overhead analysis and trade         | -off   | analy  | /SIS        | on  |
| reconfigurable       | Parallelism.                                                          |        |        | •           |     |
| UNIT - V             |                                                                       |        | ture I |             |     |
|                      | dies / Case Studies: SOC Design approach; AES-algorithms, Design      | and    | evalu  | ation       | 1;  |
|                      | ssion–JPEG compression.                                               |        |        |             |     |
| Textbooks:           |                                                                       | ** **  | 1 7    | 1. 1        |     |
| · · ·                | stem Design System-on-Chip - Michael J. Flynn and Wayne Luk           | , W16  | ely In | dia I       | vt. |
| Ltd.                 |                                                                       |        | •      | <b>XX</b> 7 | 1.  |
| -                    | em on Chip Architecture – Steve Furber, 2ndEdition, 2000,             | Add    | ison   | wes         | iey |
| Professional         |                                                                       |        |        |             |     |
| <b>Reference Boo</b> | KS:                                                                   |        |        |             |     |



### M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

 Design of System on a Chip: Devices and Components – Ricardo Reis, 1st Ed., 2004, Springer
 Co-Verification of Hardware and Software for ARM System on Chip Design (EmbeddedTechnology) – Jason Andrews – Newnes, BK and CDROM.
 System on Chip Verification – Methodologies and Techniques –PrakashRashinkar, PeterPaterson and Leena Singh L, 2001, Kluwer Academic Publishers



# M.TECH. IN EMBEDDED SYSTEMS

| 21D06105       0       0       4       2         Semester       I    Course Objectives:          • To familiarize the HDL simulator / synthesis tool       •       To design and implement given combinational circuit on FPGA device         • To design and implement given sequential circuit on FPGA device       •       Course Outcomes (CO):         • Familiarize the HDL simulator / synthesis tool       •       Design and implement given combinational circuit on FPGA device         • Design and implement given sequential circuit on FPGA device       •       Design and implement given combinational circuit on FPGA device         • Design and implement given sequential circuit on FPGA device       •       •         List of Experiments:       •       •         Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device.       •         1. Combinational Logic Circuits       •       •       •         a. Generic Multiplexer.       •       •       •         b. Generic Priority Encoder.       •       •       •         c. Design of RAM Memory.       •       Code Converters.       •         g. Carry-Look ahead adder.       •       •       •       •         b. Signed and Unsigned Subtractors.       •                                                                  | Course Co         | de     | DIGITAL SYSTEM DESIGN LAB                                  | L      | Т    | Р       | С    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|------------------------------------------------------------|--------|------|---------|------|
| Course Objectives:         • To familiarize the HDL simulator / synthesis tool         • To design and implement given combinational circuit on FPGA device         • To design and implement given sequential circuit on FPGA device         • To miliarize the HDL simulator / synthesis tool         • Design and implement given combinational circuit on FPGA device         • Design and implement given combinational circuit on FPGA device         • Design and implement given sequential circuit on FPGA device         • Design and implement given sequential circuit on FPGA device         • Ist of Experiments:         Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device.         1. Combinational Logic Circuits         a. Generic Multiplexer.         b. Generic Priority Encoder.         c. Design of RAM Memory.         d. Code Converters.         e. Combinational Arithmetic circuits         f. Ripple Carry Adder.         g. Carry-Look ahead adder.         h. Signed and Unsigned Adders.         i. Signed and Unsigned Multipliers.         j. N-bit Comparator.         k. N - bit Arithmetic Logic Unit.         l. Parallel Signed and unsigned Multipliers.         m. Dividers.         2. Sequential Circuits         a. Shift Register with Load.                 | 21D0610           | 5      |                                                            | 0      | 0    | 4       | 2    |
| <ul> <li>To familiarize the HDL simulator / synthesis tool</li> <li>To design and implement given combinational circuit on FPGA device</li> <li>To design and implement given sequential circuit on FPGA device</li> <li>Course Outcomes (CO):</li> <li>Familiarize the HDL simulator / synthesis tool</li> <li>Design and implement given combinational circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> <li>List of Experiments:</li> <li>Student has to design his/her user defined library components by using and standard HDL simulator / synthesis tool for target FPGA device.</li> <li>1. Combinational Logic Circuits <ul> <li>Generic Priority Encoder.</li> <li>Design of RAM Memory.</li> <li>Code Converters.</li> <li>Combinational Arithmetic circuits</li> <li>Ripple Carry Adder.</li> <li>Signed and Unsigned Adders.</li> <li>Signed and Unsigned Subtractors.</li> <li>N-bit Comparator.</li> <li>N - bit Arithmetic Logic Unit.</li> <li>Parallel Signed and unsigned Multipliers.</li> <li>Dividers.</li> </ul> </li> <li>2. Sequential Circuits <ul> <li>Shift Register with Load.</li> <li>Switch Debouncer.</li> <li>Timer.</li> <li>Fibonacci Series Generator.</li> <li>Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> </ul> |                   |        | Semester                                                   |        |      | Ι       |      |
| <ul> <li>To familiarize the HDL simulator / synthesis tool</li> <li>To design and implement given combinational circuit on FPGA device</li> <li>To design and implement given sequential circuit on FPGA device</li> <li>Course Outcomes (CO):</li> <li>Familiarize the HDL simulator / synthesis tool</li> <li>Design and implement given combinational circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> <li>List of Experiments:</li> <li>Student has to design his/her user defined library components by using and standard HDL simulator / synthesis tool for target FPGA device.</li> <li>1. Combinational Logic Circuits <ul> <li>Generic Priority Encoder.</li> <li>Design of RAM Memory.</li> <li>Code Converters.</li> <li>Combinational Arithmetic circuits</li> <li>Ripple Carry Adder.</li> <li>Signed and Unsigned Adders.</li> <li>Signed and Unsigned Subtractors.</li> <li>N-bit Comparator.</li> <li>N - bit Arithmetic Logic Unit.</li> <li>Parallel Signed and unsigned Multipliers.</li> <li>Dividers.</li> </ul> </li> <li>2. Sequential Circuits <ul> <li>Shift Register with Load.</li> <li>Switch Debouncer.</li> <li>Timer.</li> <li>Fibonacci Series Generator.</li> <li>Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> </ul> |                   |        |                                                            |        |      |         |      |
| <ul> <li>To design and implement given combinational circuit on FPGA device</li> <li>To design and implement given sequential circuit on FPGA device</li> <li>Familiarize the HDL simulator / synthesis tool</li> <li>Design and implement given combinational circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> <li><b>List of Experiments:</b></li> <li>Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device.</li> <li>1. Combinational Logic Circuits <ul> <li>Generic Multiplexer.</li> <li>Generic Priority Encoder.</li> <li>Design of RAM Memory.</li> <li>Code Converters.</li> <li>Combinational Arithmetic circuits</li> <li>Ripple Carry Adder.</li> <li>Carry-Look ahead adder.</li> <li>Signed and Unsigned Adders.</li> <li>Signed and Unsigned Subtractors.</li> <li>N-bit Comparator.</li> <li>N - bit Arithmetic Logic Unit.</li> <li>Parallel Signed and unsigned Multipliers.</li> <li>Dividers.</li> </ul> </li> <li>2. Sequential Circuits <ul> <li>Shift Register with Load.</li> <li>Switch Debouncer.</li> <li>Timer.</li> <li>Fibonacci Series Generator.</li> <li>Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> </ul>                     | Course Obj        | ectiv  | 7es:                                                       |        |      |         |      |
| <ul> <li>To design and implement given sequential circuit on FPGA device</li> <li>Course Outcomes (CO): <ul> <li>Familiarize the HDL simulator / synthesis tool</li> <li>Design and implement given combinational circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> </ul> </li> <li>List of Experiments: <ul> <li>Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device.</li> </ul> </li> <li>Combinational Logic Circuits <ul> <li>Generic Multiplexer.</li> <li>Generic Multiplexer.</li> <li>Generic Priority Encoder.</li> <li>Design of RAM Memory.</li> <li>Code Converters.</li> <li>Combinational Arithmetic circuits</li> <li>Ripple Carry-Look ahead adder.</li> <li>Signed and Unsigned Adders.</li> <li>Signed and Unsigned Adders.</li> <li>Signed and Unsigned Multipliers.</li> <li>Dividers.</li> </ul> </li> <li>Sequential Circuits <ul> <li>Shift Register with Load.</li> <li>Switch Debouncer.</li> <li>Timer.</li> <li>Fibonacci Series Generator.</li> <li>Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> </ul>                                                                                                                                                                                                      | • To f            | amil   | iarize the HDL simulator / synthesis tool                  |        |      |         |      |
| Course Outcomes (CO):         • Familiarize the HDL simulator / synthesis tool         • Design and implement given combinational circuit on FPGA device         • Design and implement given sequential circuit on FPGA device         List of Experiments:         Student has to design his/her user defined library components by using and standard HDL simulator         / Synthesis tool for target FPGA device.         1. Combinational Logic Circuits         a. Generic Multiplexer.         b. Generic Priority Encoder.         c. Design of RAM Memory.         d. Code Converters.         e. Combinational Arithmetic circuits         f. Ripple Carry Adder.         g. Carry-Look ahead adder.         h. Signed and Unsigned Subtractors.         j. N-bit Comparator.         k. N – bit Arithmetic Logic Unit.         l. Parallel Signed and unsigned Multipliers.         m. Dividers.         2. Sequential Circuits         a. Shift Register with Load.         b. Switch Debouncer.         c. Timer.         d. Fibonacci Series Generator.         e. Frequency Meters.         Software Requirements:         Stillinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software                                                                                                                                                                      | • To <b>c</b>     | lesig  | n and implement given combinational circuit on FPGA device |        |      |         |      |
| <ul> <li>Familiarize the HDL simulator / synthesis tool</li> <li>Design and implement given combinational circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> <li>List of Experiments:</li> <li>Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device.</li> <li>Combinational Logic Circuits <ul> <li>a. Generic Multiplexer.</li> <li>b. Generic Priority Encoder.</li> <li>c. Design of RAM Memory.</li> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits</li> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> </li> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> </ul> <li>Software Requirements:</li> <li>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:</li>                                                                                      | • To <b>c</b>     | lesig  | n and implement given sequential circuit on FPGA device    |        |      |         |      |
| <ul> <li>Design and implement given combinational circuit on FPGA device</li> <li>Design and implement given sequential circuit on FPGA device</li> </ul> List of Experiments: Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device. 1. Combinational Logic Circuits <ul> <li>a. Generic Multiplexer.</li> <li>b. Generic Priority Encoder.</li> <li>c. Design of RAM Memory.</li> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits</li> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:                                                                                                                                                                                                   | <b>Course Out</b> | com    | es (CO):                                                   |        |      |         |      |
| <ul> <li>Design and implement given sequential circuit on FPGA device</li> <li>List of Experiments:</li> <li>Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device.</li> <li>1. Combinational Logic Circuits <ul> <li>a. Generic Multiplexer.</li> <li>b. Generic Priority Encoder.</li> <li>c. Design of RAM Memory.</li> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits</li> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> </li> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> </ul>                                                                                                                                                                                                                                                                                                                                  | • Fam             | iliari | ize the HDL simulator / synthesis tool                     |        |      |         |      |
| List of Experiments:         Student has to design his/her user defined library components by using and standard HDL simulator         / Synthesis tool for target FPGA device.         1. Combinational Logic Circuits         a. Generic Multiplexer.         b. Generic Priority Encoder.         c. Design of RAM Memory.         d. Code Converters.         e. Combinational Arithmetic circuits         f. Ripple Carry Adder.         g. Carry-Look ahead adder.         h. Signed and Unsigned Adders.         i. Signed and Unsigned Subtractors.         j. N-bit Comparator.         k. N – bit Arithmetic Logic Unit.         l. Parallel Signed and unsigned Multipliers.         m. Dividers.         2. Sequential Circuits         a. Shift Register with Load.         b. Switch Debouncer.         c. Timer.         d. Fibonacci Series Generator.         e. Frequency Meters.         Software Requirements:         Xillinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software                                                                                                                                                                                                                                                                                                                                                                        | • Dest            | ign a  | nd implement given combinational circuit on FPGA device    |        |      |         |      |
| List of Experiments:         Student has to design his/her user defined library components by using and standard HDL simulator         / Synthesis tool for target FPGA device.         1. Combinational Logic Circuits         a. Generic Multiplexer.         b. Generic Priority Encoder.         c. Design of RAM Memory.         d. Code Converters.         e. Combinational Arithmetic circuits         f. Ripple Carry Adder.         g. Carry-Look ahead adder.         h. Signed and Unsigned Adders.         i. Signed and Unsigned Subtractors.         j. N-bit Comparator.         k. N – bit Arithmetic Logic Unit.         l. Parallel Signed and unsigned Multipliers.         m. Dividers.         2. Sequential Circuits         a. Shift Register with Load.         b. Switch Debouncer.         c. Timer.         d. Fibonacci Series Generator.         e. Frequency Meters.         Software Requirements:         Xillinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software                                                                                                                                                                                                                                                                                                                                                                        | • Dest            | ign a  | nd implement given sequential circuit on FPGA device       |        |      |         |      |
| <ul> <li>Student has to design his/her user defined library components by using and standard HDL simulator / Synthesis tool for target FPGA device.</li> <li>Combinational Logic Circuits <ul> <li>Generic Multiplexer.</li> <li>Generic Priority Encoder.</li> <li>Design of RAM Memory.</li> <li>Code Converters.</li> <li>Combinational Arithmetic circuits</li> <li>Ripple Carry Adder.</li> <li>Carry-Look ahead adder.</li> <li>Signed and Unsigned Adders.</li> <li>Signed and Unsigned Subtractors.</li> <li>N-bit Comparator.</li> <li>N - bit Arithmetic Logic Unit.</li> <li>Parallel Signed and unsigned Multipliers.</li> <li>Dividers.</li> </ul> </li> <li>2. Sequential Circuits <ul> <li>Shift Register with Load.</li> <li>Switch Debouncer.</li> <li>Timer.</li> <li>Fielonacci Series Generator.</li> <li>Frequency Meters.</li> </ul> </li> </ul> <li>2. Software Requirements:</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | -      |                                                            |        |      |         |      |
| <ul> <li>/ Synthesis tool for target FPGA device.</li> <li>1. Combinational Logic Circuits <ul> <li>a. Generic Multiplexer.</li> <li>b. Generic Priority Encoder.</li> <li>c. Design of RAM Memory.</li> </ul> </li> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits <ul> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N - bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> </li> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |        |                                                            | lard I | HDL. | simul   | ator |
| <ol> <li>Combinational Logic Circuits         <ol> <li>Generic Multiplexer.</li> <li>Generic Priority Encoder.</li> <li>Design of RAM Memory.</li> <li>Code Converters.</li> <li>Combinational Arithmetic circuits</li> <li>Ripple Carry Adder.</li> <li>Carry-Look ahead adder.</li> <li>Signed and Unsigned Adders.</li> <li>Signed and Unsigned Subtractors.</li> <li>N-bit Comparator.</li> <li>N – bit Arithmetic Logic Unit.</li> <li>Parallel Signed and unsigned Multipliers.</li> <li>Dividers.</li> </ol> </li> <li>Sequential Circuits         <ol> <li>Shift Register with Load.</li> <li>Switch Debouncer.</li> <li>Timer.</li> <li>Fibonacci Series Generator.</li> <li>Frequency Meters.</li> </ol> </li> <li>Software Requirements:</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |        |                                                            | uru i  |      | 0111101 | ator |
| <ul> <li>a. Generic Multiplexer.</li> <li>b. Generic Priority Encoder.</li> <li>c. Design of RAM Memory.</li> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits</li> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |        |                                                            |        |      |         |      |
| <ul> <li>b. Generic Priority Encoder.</li> <li>c. Design of RAM Memory.</li> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits</li> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |        |                                                            |        |      |         |      |
| <ul> <li>c. Design of RAM Memory.</li> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits</li> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |        |                                                            |        |      |         |      |
| <ul> <li>d. Code Converters.</li> <li>e. Combinational Arithmetic circuits</li> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |        |                                                            |        |      |         |      |
| <ul> <li>f. Ripple Carry Adder.</li> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |                                                            |        |      |         |      |
| <ul> <li>g. Carry-Look ahead adder.</li> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e. Con            | nbina  | tional Arithmetic circuits                                 |        |      |         |      |
| <ul> <li>h. Signed and Unsigned Adders.</li> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> </ul> 2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f. Ripp           | ole C  | arry Adder.                                                |        |      |         |      |
| <ul> <li>i. Signed and Unsigned Subtractors.</li> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> <li>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g. Carı           | y-Lo   | ook ahead adder.                                           |        |      |         |      |
| <ul> <li>j. N-bit Comparator.</li> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> <li>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h. Sigr           | ied a  | nd Unsigned Adders.                                        |        |      |         |      |
| <ul> <li>k. N – bit Arithmetic Logic Unit.</li> <li>l. Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> <li>Software Requirements:</li> <li>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i. Sigr           | ied a  | nd Unsigned Subtractors.                                   |        |      |         |      |
| <ol> <li>Parallel Signed and unsigned Multipliers.</li> <li>m. Dividers.</li> <li>Sequential Circuits         <ol> <li>Shift Register with Load.</li> <li>Switch Debouncer.</li> <li>Timer.</li> <li>Fibonacci Series Generator.</li> <li>Frequency Meters.</li> </ol> </li> <li>Software Requirements:         <ol> <li>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |        |                                                            |        |      |         |      |
| <ul> <li>m. Dividers.</li> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> <li>Software Requirements: <ul> <li>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software</li> <li>Hardware Requirements:</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |                                                            |        |      |         |      |
| <ul> <li>2. Sequential Circuits <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> </li> <li>Software Requirements: <ul> <li>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software</li> <li>Hardware Requirements:</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |        |                                                            |        |      |         |      |
| <ul> <li>a. Shift Register with Load.</li> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |        |                                                            |        |      |         |      |
| <ul> <li>b. Switch Debouncer.</li> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |        |                                                            |        |      |         |      |
| <ul> <li>c. Timer.</li> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |        |                                                            |        |      |         |      |
| <ul> <li>d. Fibonacci Series Generator.</li> <li>e. Frequency Meters.</li> </ul> Software Requirements: Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        | Debouncer.                                                 |        |      |         |      |
| e. Frequency Meters.<br>Software Requirements:<br>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software<br>Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |        |                                                            |        |      |         |      |
| Software Requirements:<br>Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software<br>Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |        |                                                            |        |      |         |      |
| Xilinx Vivado, Intel Quartus Prime Pro, Lattice Diamond, equivalent EDA software <b>Hardware Requirements:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |        |                                                            |        |      |         |      |
| Hardware Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |        |                                                            |        |      |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |                                                            | vare   |      |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |                                                            |        |      |         |      |



| Course Code                         | MICROCONTROLLERS AND PROGRAMMABLE                                                                                 | L      | Т      | P       | С   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|--------|---------|-----|
| 21D06106                            | DIGITAL SIGNAL PROCESSORS LAB                                                                                     | 0      | 0      | 4       | 2   |
|                                     | Semester                                                                                                          |        |        | Ι       |     |
| Course Object                       | ives:                                                                                                             |        |        |         |     |
| To writ                             | e the ARM 'C' programming for applications                                                                        |        |        |         |     |
|                                     | erstand the interfacing of various modules with ARM 7/ ARM Co                                                     | ortex  | -M3    |         |     |
|                                     | elop assembly and C Programming for DSP processors                                                                |        |        |         |     |
| Course Outcon                       |                                                                                                                   |        |        |         |     |
|                                     | configure and utilize tool sets for developing applications based                                                 | on A   | RM p   | proces  | sor |
| core.                               | and develop the ADM7 based on badded systems for your and                                                         |        |        |         |     |
| -                                   | and develop the ARM7 based embedded systems for various application programs on ARM and DSP development boards be |        |        | mah ler | and |
| • Develo<br>C.                      | p application programs on AKM and DSP development boards of                                                       | Jui II | i asse | mory    | anu |
|                                     | and Implement the digital filters on DSP6713 processor.                                                           |        |        |         |     |
| -                                   | e the hardware and software interaction and integration.                                                          |        |        |         |     |
| List of Experin                     |                                                                                                                   |        |        |         |     |
| Part A) Experi                      | ments to be carried out on Cortex-Mx development boards and us                                                    | sing ( | GNU    | tool-   |     |
| chain                               |                                                                                                                   |        |        |         |     |
|                                     | D with software delay, delay generated using the SysTick timer.                                                   |        |        |         |     |
|                                     | real time alteration using the PLL modules.                                                                       |        |        |         |     |
|                                     | sity of an LED using PWM implemented in software and hardwa                                                       |        |        |         |     |
| 4. Control an L<br>every five swite | ED using switch by polling method, by interrupt method and flas                                                   | n the  | LED    | once    |     |
| 5. UART Echo                        | *                                                                                                                 |        |        |         |     |
|                                     | readings on rotation of rotary potentiometer connected to an ADC                                                  | C cha  | nnel.  |         |     |
|                                     | indication on an RGB LED.                                                                                         |        |        |         |     |
|                                     | ntensity sensed by the light sensor by varying the blinking rate of                                               | f an I | LED.   |         |     |
|                                     | various sleep modes by putting core in sleep and deep sleep mod                                                   | es.    |        |         |     |
|                                     | t using watchdog timer in case something goes wrong.                                                              |        |        |         |     |
|                                     | nd using a microphone and display sound levels on LEDs.                                                           | ~ .    | ~      |         |     |
| · •                                 | ments to be carried out on DSP C6713 evaluation kits and using 0                                                  | Code   | Com    | poser   |     |
| Studio (CCS)                        | an assembly code and C code to compute Euclidian distance bety                                                    | voon   | onut   | WO      |     |
| points                              | an asseniory code and C code to compute Euclidian distance bety                                                   | veen   | any t  | wU      |     |
| -                                   | assembly code and study the impact of parallel, serial and mixed                                                  | exec   | ution  |         |     |
| -                                   | assembly and C code for implementation of convolution operation                                                   |        |        |         |     |
|                                     | nd implement filters in C to enhance the features of given input s                                                |        | nce/s  | igna    |     |
| Software Requ                       | irements:                                                                                                         |        |        |         |     |
| Keil for ARM,                       | Code Composer Studio                                                                                              |        |        |         |     |
| Hardware Req                        |                                                                                                                   |        |        |         |     |
| ARM Cortex M                        | x Development Boards, TI TMS C6713 evaluation kit                                                                 |        |        |         |     |



## M.TECH. IN EMBEDDED SYSTEMS

| Course Code      | <b>RESEARCH METHODOLOGY AND IPR</b>                                 | L            | Т        | Р        | С       |
|------------------|---------------------------------------------------------------------|--------------|----------|----------|---------|
| 21DRM101         |                                                                     | 2            | 0        | 0        | 2       |
|                  | Semeste                                                             | r            |          | Ι        |         |
|                  |                                                                     |              |          |          |         |
| Course Objecti   |                                                                     |              |          |          |         |
|                  | an appropriate research problem in their interesting domain.        |              |          |          |         |
|                  | and ethical issues understand the Preparation of a research project | thesis rep   | ort.     |          |         |
|                  | and the Preparation of a research project thesis report             |              |          |          |         |
|                  | and the law of patent and copyrights.                               |              |          |          |         |
|                  | and the Adequate knowledge on IPR                                   |              |          |          |         |
|                  | es (CO): Student will be able to                                    |              |          |          |         |
|                  | research related information<br>research ethics                     |              |          |          |         |
|                  | and that today's world is controlled by Computer, Information       | Tachnolo     | ov but   | tom      | orrow   |
|                  | ill be ruled by ideas, concept, and creativity.                     |              | gy, bui  | tom      | orrow   |
|                  | anding that when IPR would take such important place in growth      | of individ   | hials &  | natio    | n it is |
|                  | to emphasis the need of information about Intellectual Property     |              |          |          |         |
|                  | in general & engineering in particular.                             | ingin to     | o pron   | liotou t |         |
|                  | and that IPR protection provides an incentive to inventors fo       | further      | researc  | h wor    | k and   |
|                  | ent in R & D, which leads to creation of new and better produc      |              |          |          |         |
|                  | c growth and social benefits.                                       | ,            |          | U        |         |
| UNIT - I         | Lecture H                                                           | rs:          |          |          |         |
| Meaning of res   | earch problem, Sources of research problem, Criteria Charac         | teristics of | of a go  | ood re   | search  |
| problem, Errors  | in selecting a research problem, scope, and objectives of research  | ch proble    | em. Ăj   | oproac   | hes of  |
|                  | f solutions for research problem, data collection, analysis         |              |          |          |         |
| instrumentations |                                                                     | -            |          |          |         |
| UNIT - II        | Lecture H                                                           | rs:          |          |          |         |
|                  | re studies approaches, analysis Plagiarism, Research ethics, Eff    |              |          |          |         |
|                  | Paper Developing a Research Proposal, Format of research p          | proposal,    | a pres   | entatio  | on and  |
|                  | review committee.                                                   |              |          |          |         |
| UNIT - III       | Lecture H                                                           |              |          |          |         |
|                  | ctual Property: Patents, Designs, Trade and Copyright. Process of   |              |          |          |         |
|                  | search, innovation, patenting, development. International Scenar    | io: Interr   | ational  | coope    | eration |
|                  | roperty. Procedure for grants of patents, Patenting under PCT.      |              |          |          |         |
| UNIT - IV        | Lecture H                                                           |              |          | 1.1.     | 1       |
|                  | cope of Patent Rights. Licensing and transfer of technology. Pate   | nt informa   | ation ar | nd data  | bases.  |
| Geographical In  | dications.                                                          |              |          |          |         |
| UNIT - V         |                                                                     |              | IDD      | 6 D' 1   | • •     |
|                  | ents in IPR: Administration of Patent System. New development       |              | ; IPR (  | of Biol  | ogical  |
|                  | ter Software etc. Traditional knowledge Case Studies, IPR and II    | l S.         |          |          |         |
| Textbooks:       |                                                                     |              |          |          |         |
|                  | t Melville and Wayne Goddard, "Research methodology: an             | introduc     | tion to  | r scier  | nce &   |
|                  | ing students'"                                                      | 1            |          |          |         |
|                  | e Goddard and Stuart Melville, "Research Methodology: An Intro      | duction      |          |          |         |
| Reference Book   |                                                                     | 7 1 6        |          |          |         |
|                  | jit Kumar, 2nd Edition, "Research Methodology: A Step by Step of    | Juide for    |          |          |         |
|                  | nners"                                                              | 2007         |          |          |         |
|                  | pert, "Resisting Intellectual Property", Taylor & amp; Francis Ltd  | 2007.        |          |          |         |
|                  | rall, "Industrial Design", McGraw Hill, 1992.                       |              |          |          |         |
| 4. Nieł          | bel, "Product Design", McGraw Hill, 1974.                           |              |          |          |         |



- 5. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 6. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.



# M.TECH. IN EMBEDDED SYSTEMS

| Course Code              | EMBEDDED SYSTEMS DESIGN                                                                   |       | T     | P          | C   |
|--------------------------|-------------------------------------------------------------------------------------------|-------|-------|------------|-----|
| 21D06201                 |                                                                                           | 3     | 0     | 0          | 3   |
|                          | Semester                                                                                  |       | I     | I          |     |
| Course Objectiv          | es:                                                                                       |       |       |            |     |
| ×                        | entiate between a General purpose and an Embedded System.                                 |       |       |            |     |
|                          | de knowledge on the building blocks of Embedded System.                                   |       |       |            |     |
| ·                        | stand the requirement of Embedded firmware and its role in API.                           |       |       |            |     |
|                          | es (CO): Student will be able to                                                          |       |       |            |     |
|                          | to differentiate the design requirements between General Purpos                           | se ar | nd Er | nbed       | dec |
| Systems.                 |                                                                                           |       |       |            |     |
| •                        | to acquire the knowledge of firmware design principles.                                   |       |       |            |     |
| -                        | to understand the role of Real Time Operating System in Embedde                           | ed D  | esign | l <b>.</b> |     |
| •                        | re the knowledge and experience of task level Communication i                             |       | -     |            | dec |
| System.                  |                                                                                           |       | 5     |            |     |
| UNIT - Í                 |                                                                                           | Leo   | cture | Hrs:       |     |
| Introduction to E        | mbedded Systems: Definition of Embedded System, Embedded Sy                               | stem  | s Vs  | Gene       | ra  |
| Computing Syste          | ms, History of Embedded Systems, Classification, Major Applicati                          | on A  | reas  | ,          |     |
| Purpose of Embe          | dded Systems,                                                                             |       |       |            |     |
| Characteristics an       | nd Quality Attributes of Embedded Systems.                                                |       |       |            |     |
| UNIT - II                |                                                                                           |       | cture |            |     |
|                          | ed System: Core of the Embedded System: General Purpose and Do                            |       |       |            |     |
|                          | Cs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory                              |       |       |            |     |
|                          | ng to the type of Interface, Memory Shadowing, Memory selection                           |       |       |            |     |
| •                        | and Actuators, Communication Interface: Onboard and External C                            | Comn  | nunic | atior      | 1   |
|                          | , Flash, NVRAM                                                                            |       |       |            |     |
| UNIT - III               |                                                                                           |       | cture |            | -   |
|                          | vare: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, I                     |       |       | e Clo      | ck, |
|                          | Embedded Firmware Design Approaches and Development Lang                                  |       |       | 11         |     |
| UNIT - IV                | <br>haddad Syntam Dasian Onemating Syntam Dasias Tymes of Onemat                          |       | cture |            |     |
|                          | bedded System Design: Operating System Basics, Types of Operat                            | ing : | syste | ms,        |     |
|                          | nd Threads, Multiprocessing and Multitasking, Task Scheduling.                            | т     |       | 11         |     |
| UNIT - V                 | Charles Marrie Device Device Device Device Device Inc. Call                               | -     | cture |            | -1- |
|                          | ation: Shared Memory, Message Passing, Remote Procedure Call an                           |       |       |            |     |
| •                        | Task Communication/Synchronization Issues, Task Synchronization<br>How to Choose an RTOS. |       | echin | iques      | ,   |
| Textbooks:               | Tow to Choose all K1 OS.                                                                  |       |       |            |     |
|                          | ion to Embedded Systems - Shibu K.V, Mc Graw Hill.                                        |       |       |            |     |
|                          |                                                                                           |       |       |            |     |
| Reference Books1.Embedde | s:<br>ed Systems - Raj Kamal, TMH.                                                        |       |       |            |     |
|                          | ed System Design - Frank Vahid, Tony Givargis, John Wiley.                                |       |       |            |     |
|                          | ed System Design - Frank Vanid, Tony Givargis, John Whey.                                 |       |       |            |     |
|                          | edded Software Primer - David E. Simon, Pearson Education.                                |       |       |            |     |
| T. All Lillot            | aucu Sonware i finici - Daviu E. Sinioli, realson Euucatioli.                             |       |       |            |     |



| Course Code          | EMBEDDED PROGRAMMING                                               | L        | Т      | Р       | C    |
|----------------------|--------------------------------------------------------------------|----------|--------|---------|------|
| 21D55201             |                                                                    | 3        | 0      | 0       | 3    |
|                      | Semester                                                           |          | Ī      | -       |      |
|                      |                                                                    | I        |        |         |      |
| Course Objectiv      | 'es:                                                               |          |        |         |      |
|                      | the difference between general purpose programming languages       | s and    | d En   | nbed    | ded  |
| Programming          |                                                                    |          |        |         |      |
| U .                  | ase studies for programming in Embedded systems.                   |          |        |         |      |
| Course Outcom        | es (CO): Student will be able to                                   |          |        |         |      |
| Learn the            | e basics of Embedded C with reference to 8051.                     |          |        |         |      |
| Understa             | nd how to handle control and data pins at hardware level.          |          |        |         |      |
|                      | e objective nature of Embedded C.                                  |          |        |         |      |
|                      | nd the specifications of real time embedded programming with case  | e stu    | dies.  |         |      |
| UNIT - I             |                                                                    |          | cture  | Hrs:    |      |
|                      | NG EMBEDDED SYSTEMS IN C: Introduction to embedded s               |          |        |         | sor  |
|                      | ng language used, operating system used, developing embedded sol   |          |        |         |      |
|                      | G THE 8051 MICROCONTROLLER FAMILY: Introduction                    |          |        | exter   | nal  |
| interface of the     | Standard 8051, Reset requirements, Clock frequency and performance | orma     | nce N  | Mem     | ory  |
|                      | Fimers, Interrupts, Serial interface, Power consumption.           |          |        |         | •    |
| UNIT - II            |                                                                    | Leo      | cture  | Hrs:    |      |
| EMBEDDED V           | WORLD: Introduction Installing the Keil software and load          | ing      | the    | proj    | ect, |
| Configuring the      | simulator, Building the target, Running the simulation, Dissect    | ing 1    | the p  | rogra   | am,  |
| Building the hard    | lware.                                                             | -        | -      | -       |      |
| UNIT - III           |                                                                    | Leo      | cture  | Hrs:    |      |
| <b>READING SW</b>    | ITCHES: Introduction, Basic techniques for reading from por        | t pir    | ns, E  | xamp    | ple: |
|                      | ing bytes, Example: Reading and writing bits (simple version), The |          | d for  | pull    | -up  |
|                      | with switch bounce, Example: Reading switch inputs (basic code)    |          |        |         |      |
| UNIT - IV            |                                                                    |          | cture  |         |      |
|                      | JCTURE TO YOUR CODE: Introduction, Object-oriented prog            |          | •      |         |      |
|                      | der (MAIN.H), The Port Header (PORT.H), Example: Restruct          | turin    | g the  | · 'He   | ello |
| Embedded World       |                                                                    |          |        |         |      |
|                      | AL-TIME CONSTRAINTS: Introduction, Creating 'hardware del          |          |        |         |      |
|                      | ample: Generating a precise 50 ms delay, Example: Creating a p     | orta     | ble h  | ardw    | are  |
|                      | for 'timeout' mechanisms, Creating loop timeouts.                  | Ŧ        |        | <u></u> |      |
| UNIT - V             |                                                                    |          | cture  |         | 1    |
|                      | N EMBEDDED OPERATING SYSTEM: Introduction, The b                   |          |        |         | •    |
|                      | ntroducing sEOS, Using Timer 0 or Timer 1, alternative archite     | cture    | es, in | nport   | ant  |
| U U                  | tions when using sEOS.                                             | <b>T</b> | 1      |         |      |
|                      | SYSTEMS AND FUNCTION SEQUENCES: Introduction,                      | -        |        | -       | -    |
|                      | ed) system, traffic light sequencing, Animatronics dinosaur, imple | men      | ting a | a IVIU  | .iu- |
|                      | ed) system, Controller for a washing machine                       |          |        |         |      |
| Textbooks:1.Embedded | ed C By Micheal J. Pont Pearson Education, 2002.                   |          |        |         |      |
|                      | •                                                                  |          |        |         |      |
|                      | ed C Coding standard-Michael Barr from Neutrino.                   |          |        |         |      |
| Reference Book       |                                                                    | 1        | 2002   |         |      |
|                      | the Concepts for Embedded systems-Qing Li,Caroline Yao, CMP Bo     | oks      | 2003   | •       |      |
| 2. Embedde           | ed/Real Time Systems-KVKK Prasad, Dreamtech press, 2005            |          |        |         |      |



### M.TECH. IN EMBEDDED SYSTEMS

| Course Code            | SENSORS AND ACTUATORS                                                                                                               | L      | Т            | Р         | С  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|-----------|----|
| 21D55202a              | Program Elective – III                                                                                                              | 3      | 0            | 0         | 3  |
|                        | Semester                                                                                                                            |        | Ι            | I         |    |
|                        |                                                                                                                                     |        |              |           |    |
| <b>Course Objectiv</b> | 7es:                                                                                                                                |        |              |           |    |
|                        | about Electro mechanical sensors.                                                                                                   |        |              |           |    |
|                        | the use of the thermal sensors and magnetic sensors for embedded                                                                    | syste  | em.          |           |    |
|                        | the basics of radiation sensors, smart sensors and actuators.                                                                       | 5950   |              |           |    |
|                        | es (CO): Student will be able to                                                                                                    |        |              |           |    |
|                        | out Electro mechanical sensors.                                                                                                     |        |              |           |    |
|                        | e use of the thermal sensors and magnetic sensors for embedded sys                                                                  | tem    |              |           |    |
|                        | e basics of radiation sensors, smart sensors and actuators.                                                                         |        |              |           |    |
| UNIT - I               |                                                                                                                                     | Iec    | ture         | Hree      |    |
| Sensors/Transdu        | licars                                                                                                                              | Lu     | luic         | 1115.     |    |
|                        | sification – Parameters – Characteristics - Environmental Paramete                                                                  | rs (F  | <b>D</b> ) _ |           |    |
| Characterization.      |                                                                                                                                     | 13 (L  | 1)-          |           |    |
|                        | Electromechanical Sensors                                                                                                           |        |              |           |    |
|                        | esistive Potentiometer – Strain Gauge – Resistance Strain Gauge – S                                                                 | Semi   | cond         | uctor     |    |
|                        | iductive Sensors: Sensitivity and Linearity of the Sensor – Types-Ca                                                                |        |              | uctor     |    |
|                        | ostatic Transducer– Force/Stress Sensors Using Quartz Resonators -                                                                  |        |              | ic        |    |
| Sensors.               | state Transducci – Force/Stress Sensors Using Quartz Resonators -                                                                   | - 01   | 14501        | ne        |    |
| UNIT - II              |                                                                                                                                     | Lac    | ture         | Ure       |    |
| Thermal Sensor         |                                                                                                                                     | Let    | luie         | 1115.     |    |
|                        |                                                                                                                                     | Sone   | ore          |           |    |
|                        | as thermometric Sensors – Thermal Expansion Type Thermometric<br>rature Sensor – Dielectric Constant and Refractive Index thermosen |        |              |           |    |
| -                      | e Thermometer – Nuclear Thermometer – Magnetic Thermometer -                                                                        |        |              |           |    |
|                        | ermometric Sensors – Thermoemf Sensors– Junction Semiconducto                                                                       |        |              | Ce        |    |
|                        | on Sensors – Quartz Crystal Thermoelectric Sensors – NQR Thermo                                                                     |        |              |           |    |
|                        | ermometry – Noise Thermometry – Heat Flux Sensors.                                                                                  | meu    | у —          |           |    |
| Magnetic sensor        |                                                                                                                                     |        |              |           |    |
| 0                      | s<br>ensors and the Principles Behind – Magneto-resistive Sensors – Ani                                                             | ootro  | nia          |           |    |
|                        | Sensing – Semiconductor Magnetoresistors– Hall Effect and Sensor                                                                    |        |              | ctand     | 20 |
|                        | t Sensors– Angular/Rotary Movement Transducers – Synchros – Synchros                                                                |        |              |           |    |
| -                      | ensors – Electromagnetic Flowmeter – Switching Magnetic Sensor                                                                      |        |              | SOLVE     | 15 |
| Sensors.               | ensors – Electromagnetic Prowincter – Switching Magnetic Sensor                                                                     | ya a   |              |           |    |
| UNIT - III             |                                                                                                                                     | Lec    | ture         | Hree      |    |
| Radiation Senso        | re                                                                                                                                  | Lu     | luic         | 1115.     |    |
|                        | asic Characteristics – Types of Photosensistors/Photo detectors– X-                                                                 | rav a  | nd N         | ucles     | ar |
|                        | s– Fiber Optic Sensors.                                                                                                             | lay a  | inu iv       | ucica     | ι1 |
| Electro analytic       | -                                                                                                                                   |        |              |           |    |
| •                      | ne Electrochemical Cell – The Cell Potential - Standard Hydrogen E                                                                  | Electr | ode          | SHE       | 0  |
| - Liquid Junction      | and Other Potentials – Polarization – Concentration Polarization-                                                                   | - Ref  | eren         | שים<br>יף | ') |
|                        | sor Electrodes – Electro ceramics in Gas Media.                                                                                     | 1.01   | CI CIN       |           |    |
| UNIT - IV              |                                                                                                                                     | Leo    | ture         | Hrs       |    |
| Smart Sensors          | 1                                                                                                                                   |        |              |           |    |
|                        | imary Sensors – Excitation – Amplification – Filters – Converters -                                                                 | - Co   | nnen         | satio     | n_ |
|                        | ing/Processing - Data Communication – Standards for Smart Sensor                                                                    |        | -            |           |    |



| Automation.     |                                                            |                                   |
|-----------------|------------------------------------------------------------|-----------------------------------|
| Sensors – App   | lications                                                  |                                   |
| Introduction -  | On-board Automobile Sensors (Automotive Sensors)- Hon      | me Appliance Sensors –            |
| Aerospace Sen   | sors — Sensors for Manufacturing –Sensors for environme    | ental Monitoring.                 |
| UNIT - V        |                                                            | Lecture Hrs:                      |
| Actuators       |                                                            |                                   |
| Pneumatic and   | Hydraulic Actuation Systems- Actuation systems - Pneur     | matic and hydraulic systems       |
| - Directional C | ontrol valves - Presure control valves - Cylinders - Servo | and proportional control          |
| valves - Proces | ss control valves – Rotary actuators.                      |                                   |
| Mechanical Ac   | tuation Systems- Types of motion – Kinematic chains – Ca   | ams – Gears – Ratchet and         |
| pawl – Belt and | d chain drives - Bearings - Mechanical aspects of motor se | election.                         |
|                 | ation Systems-Electrical systems -Mechanical switches - S  | Solid-state switches              |
| Solenoids – D.  | C. Motors – A.C. motors – Stepper motors.                  |                                   |
| Textbooks:      |                                                            |                                   |
|                 | s, "Sensors and Transducers", PHI Learning Private Limite  | ed.                               |
| 2. W. Bolton, " | 'Mechatronics", Pearson Education Limited.                 |                                   |
| Reference Boo   | oks:                                                       |                                   |
| 1. Ernest O.Do  | ebelin, Measurement Systems - Application & Design,4th I   | Edition,Mc-GrawHill               |
| Publishing con  | ipany                                                      |                                   |
| 0               | G Sarma , V.S.V. Mani Instrumentation: Devices and Sys     | stems,4 <sup>th</sup> Edition,Mc- |
| GrawHill Publi  | ishing company                                             |                                   |



### M.TECH. IN EMBEDDED SYSTEMS

| Course Code MODERN CONTROL THEORY                                                                                                                                    | L     | Т      | Р          | С    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------|------|
| 21D55202b Program Elective – III                                                                                                                                     | 3     | 0      | 0          | 3    |
| Semester                                                                                                                                                             |       | Ι      | I          |      |
|                                                                                                                                                                      |       |        |            |      |
| Course Objectives:                                                                                                                                                   |       |        |            |      |
| • To understand concepts of modern control system To explain the concepts                                                                                            | of s  | tate v | ariab      | les  |
| analysis.                                                                                                                                                            |       |        |            |      |
| • To study and analyze non linear control systems.                                                                                                                   |       |        |            |      |
| • To analyze the concept of stability for nonlinear control systems and their c                                                                                      | ateg  | orizat | ion        |      |
| <ul> <li>To apply the comprehensive knowledge of optimal theory for Control System</li> </ul>                                                                        |       | /112ac |            |      |
| <b>Course Outcomes (CO):</b> Student will be able to                                                                                                                 |       |        |            |      |
| Understand concepts of modern control system To explain the concepts                                                                                                 | of    | ate v  | ariah      | ماود |
| analysis.                                                                                                                                                            | 01 5  | late v | anau       | nes  |
| <ul> <li>Study and analyze non linear control systems.</li> </ul>                                                                                                    |       |        |            |      |
| <ul> <li>Analyze the concept of stability for nonlinear control systems and their cate</li> </ul>                                                                    | aori  | otion  |            |      |
|                                                                                                                                                                      | •     | Lation | l <b>.</b> |      |
| Apply the comprehensive knowledge of optimal theory for Control System                                                                                               |       |        | T Luca     |      |
|                                                                                                                                                                      | Le    | cture  | HIS:       |      |
| Mathematical Preliminaries and State Variable Analysis                                                                                                               | £     |        | لمسمح      |      |
| Fields, Vectors and Vector Spaces – Linear combinations and Bases – Linear Trans                                                                                     |       |        | s and      |      |
| Matrices – Scalar Product and Norms – Eigen values, Eigen Vectors and a Canonic                                                                                      |       |        |            |      |
| representation of Linear systems – The concept of state – State space model of Dyn                                                                                   |       |        |            | -    |
| Time invariance and Linearity – Non uniqueness of state model – State diagrams for                                                                                   |       |        |            |      |
| Time State models - Existence and Uniqueness of Solutions to Continuous-Time St<br>Solutions of Linear Time Invariant Continuous-Time State Equations – State transi |       |        |            |      |
| it's properties. Complete solution of state space model due to zero input and due to                                                                                 |       |        | and        |      |
| UNIT - II                                                                                                                                                            |       | state. | Urai       |      |
|                                                                                                                                                                      | Le    | lure   | HIS:       |      |
| <b>Controllability and Observability</b><br>General concept of controllability – Controllability tests, different state transformat                                  | iona  | unoh ( |            |      |
| diagonalization, Jordon canonical forms and Controllability canonical forms for Co                                                                                   |       |        |            |      |
| Invariant Systems – General concept of Observability – Observability tests for Con                                                                                   |       |        |            | >    |
| Invariant Systems – Observability of different State transformation forms.                                                                                           | innuo | us-11  | me         |      |
| UNIT - III                                                                                                                                                           | La    | cture  | IInai      |      |
| State Feedback Controllers and Observers                                                                                                                             | Lee   | lure   | HIS:       |      |
| State feedback Controllers and Observers<br>State feedback controller design through Pole Assignment, using Ackkermans form                                          | 110   | Stata  |            |      |
| observers: Full order and Reduced order observers.                                                                                                                   | ula–  | State  |            |      |
| UNIT - IV                                                                                                                                                            | La    | cture  | Ura        |      |
|                                                                                                                                                                      | Le    | Jule   | піз.       |      |
| Non-Linear Systems                                                                                                                                                   | 7.00  | а Б    |            | aah  |
| Introduction – Non Linear Systems - Types of Non-Linearities – Saturation – Dead – Jump Phenomenon etc; Linearization of nonlinear systems, Singular Points and it   |       |        | ackia      | asii |
| Describing function–describing function of different types of nonlinear elements, –                                                                                  |       |        | mali       |      |
| of Non-Linear systems through describing functions. Introduction to phase-plane and                                                                                  |       |        |            |      |
| Isoclines for Constructing Trajectories, Stability analysis of nonlinear systems base                                                                                |       |        |            |      |
| method.                                                                                                                                                              |       | phase  | -pial      | IC   |
| UNIT - V                                                                                                                                                             | La    | cture  | Urai       |      |
|                                                                                                                                                                      | Le    | Jure   | 1115.      |      |
| <b>Stability Analysis</b><br>Stability in the sense of Lyapunov, Lyapunov's stability and Lypanov's instability t                                                    |       |        |            |      |
|                                                                                                                                                                      | hear  | ama    |            |      |



### M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

Generation of Lyapunov functions – Variable gradient method – Krasooviski's method.

#### **Textbooks:**

1. M.Gopal, Modern Control System Theory, New Age International - 1984

2. Ogata. K, Modern Control Engineering, Prentice Hall - 1997

3. N K Sinha, Control Systems, New Age International – 3rd edition.

#### **Reference Books:**

1. Donald E.Kirk, Optimal Control Theory an Introduction, Prentice - Hall Network series - First edition.



## M.TECH. IN EMBEDDED SYSTEMS

| Course Code                   | ARTIFICIAL INTELLIGENCE AND MACHINE                                 | L     | T      | P          | C    |
|-------------------------------|---------------------------------------------------------------------|-------|--------|------------|------|
| 21D38301b                     | LEARNING (Program Elective – III)                                   | 3     | 0      | 0          | 3    |
|                               | Semester                                                            |       | I      | I          |      |
|                               |                                                                     |       |        |            |      |
| <b>Course Objectiv</b>        |                                                                     |       |        |            |      |
|                               | the difference between optimal reasoning vs human like reasoning    |       |        |            |      |
|                               | stand the notions of state space representation, exhaustive search  | , hei | ıristi | c sea      | rch  |
| -                             | h the time and space complexities                                   |       |        |            |      |
| • To learn                    | different knowledge representation techniques                       |       |        |            |      |
|                               | stand the applications of Al: namely Game Playing, Theorem          | Pro   | ving,  | Exp        | pert |
|                               | Machine Learning and Natural. Language Processing                   |       |        |            |      |
| Course Outcome                | es (CO): Student will be able to                                    |       |        |            |      |
| <ul> <li>Possess t</li> </ul> | he ability to formulate an efficient problem space for a problem    | em    | expre  | essed      | in   |
| English.                      |                                                                     |       |        |            |      |
| <ul> <li>Possess t</li> </ul> | he ability to select a search algorithm for a problem and character | erize | its t  | ime a      | and  |
| space cor                     | nplexities.                                                         |       |        |            |      |
| <ul> <li>Possess t</li> </ul> | he skill for representing knowledge using the appropriate technique | e.    |        |            |      |
| • Possess                     | he ability to apply Al techniques to solve problems of Game         | Pla   | ying,  | Exp        | bert |
| Systems,                      | Machine Learning and Natural Language Processing.                   |       |        |            |      |
| UNIT - I                      |                                                                     | Leo   | cture  | Hrs:       |      |
| Introduction, Hist            | ory, Intelligent Systems, Foundations of AI, Sub areas of AI, Appl  | icati | ons.   |            |      |
| Problem Solving               | - State-Space Search and Control Strategies: Introduction, General  | Pro   | blem   |            |      |
| Solving, Characte             | ristics of Problem, Exhaustive Searches, Heuristic Search Techniq   | ues,  | Itera  | tive-      |      |
| Deepening A*, C               | onstraint Satisfaction. Game Playing, Bounded Look-ahead Strateg    | gy an | d use  | e of       |      |
|                               | ons, Alpha-Beta Pruning                                             |       |        |            |      |
| UNIT - II                     |                                                                     | Leo   | cture  | Hrs:       |      |
|                               | and Logic Programming                                               |       |        |            |      |
|                               | positional Calculus, Propositional Logic, Natural Deduction System  |       |        |            |      |
|                               | Tableau System in Propositional Logic, Resolution Refutation in     |       |        |            |      |
|                               | Logic, Logic Programming. Knowledge Representation: Introducti      |       |        |            | S    |
| •                             | presentation, Knowledge Representation using Semantic Network,      | Exte  | endec  | l          |      |
|                               | ks for KR, Knowledge Representation using Frames.                   | 1     |        |            |      |
| UNIT - III                    |                                                                     | Leo   | cture  | Hrs:       |      |
| Expert System a               |                                                                     | ~     |        |            |      |
|                               | ses in Building Expert Systems, Expert System Architecture, Expe    |       |        |            |      |
|                               | ms, Truth Maintenance Systems, Application of Expert Systems, L     |       |        |            |      |
|                               | y Measure – Probability Theory: Introduction, Probability Theory,   | Bay   | esian  | Beli       | ef   |
|                               | nty Factor Theory, Dempster-Shafer Theory.                          | -     |        |            |      |
| UNIT - IV                     |                                                                     | Leo   | cture  | Hrs:       |      |
| Machine-Learni                | 8 8                                                                 | 1.    |        |            |      |
|                               | chine Learning Systems. Supervised and Unsupervised Learning. In    |       |        | <b>7</b> . |      |
|                               | ng Decision Trees (Text Book 2), Deductive Learning. Clustering,    |       |        |            |      |
|                               | ial Neural Networks: Introduction, Artificial Neural Networks, Sin  | •     | •      |            |      |
|                               | s, Multi-Layer Feed-Forward Networks, Radial- Basis Function N      | etwo  | rks,   | Desig      | gn   |
| т съ се с                     | Nourol Notworks, Requirement Notworks                               |       |        |            |      |
|                               | l Neural Networks, Recurrent Networks.                              | т     |        |            |      |
| UNIT - V                      | ledge Representation Techniques                                     | Leo   | cture  | Hrs:       |      |



### M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

Case Grammars, Semantic Web Natural Language Processing: Introduction, Sentence Analysis Phases, Grammars and Parsers, Types of Parsers, Semantic Analysis, Universal Networking Knowledge.

#### **Textbooks:**

- 1. Saroj Kaushik. Artificial Intelligence. Cengage Learning, 2011.
- 2. Russell, Norvig: Artificial intelligence, A Modern Approach, Pearson Education, Second Edition. 2004.

### **Reference Books:**

1. Rich, Knight, Nair: Artificial intelligence, Tata McGraw Hill, Third Edition 2009.



### M.TECH. IN EMBEDDED SYSTEMS

| <b>Course Code</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOFT COMPUTING TECHNIQUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                                                                                                          | Т                                                                                                                                                | Р                                                                                                                             | С                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 21D06301b                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Program Elective – IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                          | 0                                                                                                                                                | 0                                                                                                                             | 3                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            | Ι                                                                                                                                                | I                                                                                                                             |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
| <b>Course Objectives</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
| • To understand t                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he concepts of different types neural networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he concepts of fuzzy logic systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ots of genetic algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
| <b>Course Outcomes</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (CO): Student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | concepts of different types neural networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | concepts of fuzzy logic systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of genetic algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                                                                                                          |                                                                                                                                                  |                                                                                                                               |                                                                     |
| UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            | ture                                                                                                                                             | Hrs:                                                                                                                          |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Neural Networks & Feed Forward Networks: Basic Concept o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Brain, Models of an Artificial Neuron, Learning Methods, Neura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al Ne                                                                                                                      | tworl                                                                                                                                            | <b>KS</b>                                                                                                                     |                                                                     |
| Architectures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rral Network: Single Layer Feed Forward Neural Network, The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Perc                                                                                                                       | eptro                                                                                                                                            | n                                                                                                                             |                                                                     |
| Model,                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (                                                                                                                        | זאחת                                                                                                                                             |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ward Neural Network, Architecture of a Back Propagation Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | agation Learning, Selection of various Parameters in BPN. Appli<br>ks in Pattern Recognition & Image Processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | catic                                                                                                                      | on or                                                                                                                                            | васк                                                                                                                          | -                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is in Pattern Recognition & image Processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                     |
| TINITT II                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lac                                                                                                                        | tuno                                                                                                                                             | I Luca                                                                                                                        |                                                                     |
| UNIT - II                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ring & ADT Nounal Naturalize David concents of Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            | ture                                                                                                                                             |                                                                                                                               | cio                                                                 |
| Associative Memo                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ories & ART Neural Networks: Basic concepts of Linear A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Asso                                                                                                                       | ciato                                                                                                                                            | r, Ba                                                                                                                         |                                                                     |
| Associative Memo<br>concepts of Dyn                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amical systems, Mathematical Foundation of Discrete-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asso<br>Time                                                                                                               | ciato<br>Ho                                                                                                                                      | r, Ba<br>p fi                                                                                                                 | eld                                                                 |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), M                                                                                                                                                                                                                                                                                                                                                                                                                             | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asso<br>Time<br>Transi                                                                                                     | ciator<br>Hoj<br>ient r                                                                                                                          | r, Ba<br>p fi<br>respon                                                                                                       | eld<br>1se                                                          |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin                                                                                                                                                                                                                                                                                                                                                                                                       | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asso<br>Time<br>Transi<br>izatio                                                                                           | ciator<br>Hoj<br>ient r<br>on P                                                                                                                  | r, Ba<br>p fi<br>espor<br>roble                                                                                               | eld<br>nse<br>em:                                                   |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the                                                                                                                                                                                                                                                                                                                                                                                | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asso<br>Time<br>Transi<br>izatio<br>I outj                                                                                 | ciator<br>Hogient r<br>on P<br>outs,                                                                                                             | r, Ba<br>p fi<br>espor<br>roble<br>Solv                                                                                       | eld<br>nse<br>em:<br>ng                                             |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea                                                                                                                                                                                                                                                                                                                                                          | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optime<br>Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asso<br>Time<br>Transi<br>izatio<br>I outj                                                                                 | ciator<br>Hogient r<br>on P<br>outs,                                                                                                             | r, Ba<br>p fi<br>espor<br>roble<br>Solv                                                                                       | eld<br>nse<br>em:<br>ng                                             |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Me<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization                                                                                                                                                                                                                                                                                                                                   | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Asso<br>Time<br>Transf<br>izatio<br>I outj<br>Clust                                                                        | ciator<br>Hoj<br>ient r<br>on P<br>outs,<br>er St                                                                                                | r, Ba<br>p fi<br>respon<br>roble<br>Solv<br>ructu                                                                             | eld<br>nse<br>em:<br>ng                                             |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Me<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III                                                                                                                                                                                                                                                                                                                     | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Asso<br>Time<br>Transf<br>izatio<br>I outj<br>Clust                                                                        | ciator<br>Hoj<br>ient r<br>on P<br>outs,<br>er St<br>eture                                                                                       | r, Ba<br>p fi<br>respon<br>roble<br>Solva<br>ructu<br>Hrs:                                                                    | eld<br>nse<br>em:<br>ng                                             |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), M<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys                                                                                                                                                                                                                                                                                                 | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asso<br>ime<br>iransi<br>izatio<br>l outj<br>Clust<br>Lec<br>, Pre                                                         | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>eture<br>dicat                                                                               | r, Ba<br>p fi<br>espon<br>roble<br>Solv<br>ructu<br><u>Hrs:</u><br>e                                                          | eld<br>nse<br>em:<br>ing<br>ire,                                    |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic                                                                                                                                                                                                                                                                          | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Asso<br>ime<br>iransi<br>izatio<br>l outj<br>Clust<br>Lec<br>, Pre                                                         | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>eture<br>dicat                                                                               | r, Ba<br>p fi<br>espon<br>roble<br>Solv<br>ructu<br><u>Hrs:</u><br>e                                                          | eld<br>nse<br>em:<br>ing<br>ire,                                    |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr                                                                                                                                                                                                                                                    | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asso<br>Time<br>Transfization<br>I outj<br>Clust<br>Lecons: C                                                              | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>cture<br>dicat<br>Greg                                                                       | r, Ba<br>p fi<br>espor<br>roble<br>Solv<br>ructu<br><u>Hrs:</u><br>e<br>Viot'                                                 | eld<br>nse<br>em:<br>ing<br>ire,                                    |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV                                                                                                                                                                                                                                       | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asso<br>ime<br>iransi<br>izatio<br>l outj<br>Clust<br>Lec<br>ns: C                                                         | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>cture<br>dicat<br>Greg                                                                       | r, Ba<br>p fi<br>espor<br>roble<br>Solv:<br>ructu<br><u>Hrs:</u><br>e<br>Viot'<br>Hrs:                                        | eld<br>nse<br>em:<br>ing<br>re,<br>s                                |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm                                                                                                                                                                                                                  | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological back                                                                                                                                                                                                                                                                                                                                                                                       | Asso<br>ime<br>iransi<br>izatio<br>l outj<br>Clust<br>Lec<br>, Pre<br>ns: C<br>Lec<br>groun                                | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>cture<br>dicat<br>dicat<br>dicat<br>dicat                                                    | r, Ba<br>p fi<br>roble<br>Solv<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati                                               | eld<br>nse<br>em:<br>ing<br>ure,<br>s                               |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work                                                                                                                                                                                           | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optime<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological back<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit                                                                                                                                                                                                                                                                                                                 | Asso<br>Time<br>Transi<br>izatio<br>l outj<br>Clust<br>Lec<br>ms: C<br>Lec<br>ground<br>tance                              | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>cture<br>dicat<br>dicat<br>dicat<br>dicat                                                    | r, Ba<br>p fi<br>roble<br>Solv<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati                                               | eld<br>nse<br>em:<br>ing<br>ure,<br>s<br>on                         |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversio                                                                                                                                                                   | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>etems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological backs<br>cing Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in                                                                                                                                                                                                                                               | Asso<br>Time<br>Transi<br>izatio<br>l outj<br>Clust<br>Lec<br>ms: C<br>Lec<br>ground<br>tance                              | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>cture<br>dicat<br>dicat<br>dicat<br>dicat                                                    | r, Ba<br>p fi<br>roble<br>Solv<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati                                               | eld<br>nse<br>em:<br>ing<br>ure,<br>s<br>on                         |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversit<br>Generational Cycle,                                                                                                                                            | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optime<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological back<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit                                                                                                                                                                                                                                                                                                                 | Assoo<br>ime<br>iransi<br>izatio<br>l outj<br>Clust<br>Lec<br>group<br>tance<br>GA,                                        | ciator<br>Hoj<br>ient r<br>on P<br>outs,<br>er St<br>cture<br>dicat<br>Greg<br>Cture<br>nd, C                                                    | r, Ba<br>p fi<br>espon<br>roble<br>Solv:<br>ructu<br>Hrs:<br>e<br>Viot'<br><u>Hrs:</u><br>Creati<br>erator                    | eld<br>nse<br>em:<br>ing<br>rre,<br>s                               |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversit<br>Generational Cycle,<br>UNIT - V                                                                                                                                | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological backs<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in<br>Convergence of Genetic Algorithm.                                                                                                                                                                                                          | Asso<br>ime<br>iransi<br>izatio<br>l outj<br>Clust<br>Lec<br>groun<br>tance<br>GA,<br>Lec                                  | ciator<br>Ho<br>ient r<br>on P<br>outs,<br>er St<br>cture<br>dicat<br>Greg<br>cture<br>nd, C<br>e Ope                                            | r, Ba<br>p fi<br>espon<br>roble<br>Solv<br>ructu<br>Hrs:<br>Viot'<br>Hrs:<br>Creation<br>Hrs:                                 | eld<br>nse<br>em:<br>ing<br>ire,<br>s<br>s                          |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contre<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversio<br>Generational Cycle,<br>UNIT - V<br>Hybrid Systems: T                                                                                                          | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Application<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological backs<br>cing Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in<br>a Convergence of Genetic Algorithm.                                                                                                                                                                                                       | Assoo<br>'ime<br>'ransi<br>izatic<br>1 outj<br>Clust<br>Lec<br>groun<br>tance<br>GA,<br>Lec<br>enetic                      | ciator<br>Hoj<br>ient r<br>Dn P<br>puts,<br>er St<br>dicat<br>Greg C<br>ture<br>nd, C<br>e Ope                                                   | r, Ba<br>p fi<br>espon<br>roble<br>Solv<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati<br>erator<br>Hrs:<br>orith           | eld<br>nse<br>m:<br>ing<br>nre,<br>s<br>s<br>on<br>s,<br>ms         |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversia<br>Generational Cycle,<br>UNIT - V<br>Hybrid Systems: T<br>Hybrid, Genetic Alg                                                                                    | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>ne Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological backs<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in<br>Convergence of Genetic Algorithm.                                                                                                                                                                                                          | Asso<br>ime<br>iransi<br>izatic<br>l outj<br>Clust<br>Lec<br>groun<br>tance<br>GA,<br>Lec<br>ch Pt                         | ciator<br>Hoj<br>ient r<br>puts,<br>er St<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>creg<br>cure<br>nd, C                         | r, Ba<br>p fi<br>espon<br>roble<br>Solv:<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati<br>erator<br>Hrs:<br>orith<br>ation | eld<br>nse<br>em:<br>ing<br>rre,<br>s<br>s<br>on<br>s,<br>ms        |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversia<br>Generational Cycle,<br>UNIT - V<br>Hybrid Systems: T<br>Hybrid, Genetic Alg                                                                                    | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological back<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in<br>, Convergence of Genetic Algorithm.                                                                                                                                                                                                         | Asso<br>ime<br>iransi<br>izatic<br>l outj<br>Clust<br>Lec<br>groun<br>tance<br>GA,<br>Lec<br>ch Pt                         | ciator<br>Hoj<br>ient r<br>puts,<br>er St<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>creg<br>cure<br>nd, C                         | r, Ba<br>p fi<br>espon<br>roble<br>Solv:<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati<br>erator<br>Hrs:<br>orith<br>ation | eld<br>nse<br>em:<br>ing<br>rre,<br>s<br>s<br>on<br>s,<br>ms        |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversit<br>Generational Cycle,<br>UNIT - V<br>Hybrid Systems: T<br>Hybrid, Genetic Alg<br>Networks: LR-type                                                               | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological back<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in<br>, Convergence of Genetic Algorithm.                                                                                                                                                                                                         | Asso<br>ime<br>iransi<br>izatic<br>l outj<br>Clust<br>Lec<br>groun<br>tance<br>GA,<br>Lec<br>ch Pt                         | ciator<br>Hoj<br>ient r<br>puts,<br>er St<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>creg<br>cure<br>nd, C                         | r, Ba<br>p fi<br>espon<br>roble<br>Solv:<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati<br>erator<br>Hrs:<br>orith<br>ation | eld<br>nse<br>em:<br>ing<br>ire,<br>s<br>s<br>on<br>s,<br>ms        |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contre<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversio<br>Generational Cycle,<br>UNIT - V<br>Hybrid Systems: T<br>Hybrid, Genetic Alg<br>Networks: LR-type<br>Inference by fuzzy I<br>Textbooks:                        | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; C<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Applicatio<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological back<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in<br>, Convergence of Genetic Algorithm.                                                                                                                                                                                                         | Asso<br>ime<br>iransi<br>izatic<br>l outj<br>Clust<br>Lec<br>groun<br>tance<br>GA,<br>Lec<br>ch Pt                         | ciator<br>Hoj<br>ient r<br>puts,<br>er St<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>creg<br>cure<br>nd, C                         | r, Ba<br>p fi<br>espon<br>roble<br>Solv:<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>Creati<br>erator<br>Hrs:<br>orith<br>ation | eld<br>nse<br>em:<br>ing<br>ire,<br>s<br>s<br>on<br>s,<br>ms        |
| Associative Memo<br>concepts of Dyn<br>Networks(HPF), Ma<br>of Continuous Tin<br>Minimization of the<br>Simultaneous Linea<br>Vector Quantization<br>UNIT - III<br>Fuzzy Logic & Sys<br>Logic, Fuzzy Logic<br>Fuzzy Cruise Contr<br>UNIT - IV<br>Genetic Algorithm<br>of Offsprings, Work<br>Cross Over, Inversia<br>Generational Cycle,<br>UNIT - V<br>Hybrid Systems: T<br>Hybrid, Genetic Alg<br>Networks: LR-type<br>Inference by fuzzy I<br>Textbooks:<br>1.Introduction to An | amical systems, Mathematical Foundation of Discrete-T<br>athematical Foundation of Gradient-Type Hopfield Networks, T<br>me Networks, Applications of HPF in Solution of Optim<br>e Traveling salesman tour length, Summing networks with digital<br>ar Equations, Bidirectional Associative Memory Networks; O<br>n, Classical ART Networks, Simplified ART Architecture<br>stems: Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic<br>, Fuzzy Rule based system, Defuzzification Methods, Application<br>oller, Air Conditioner Controller.<br>s: Basic Concepts of Genetic Algorithms (GA), Biological backs<br>king Principle, Encoding, Fitness Function, Reproduction, Inherit<br>on and Deletion, Mutation Operator, Bit-wise Operators used in<br>Convergence of Genetic Algorithm.<br>'ypes of Hybrid Systems, Neural Networks, Fuzzy Logic, and Ge<br>gorithm based BPN: GA Based weight Determination, Fuzzy Bac<br>fuzzy numbers, Fuzzy Neuron, Fuzzy BP Architecture, Learning<br>BPN. | Asso<br>ime<br>iransi<br>izatic<br>l outj<br>Clust<br>Lec<br>groun<br>tance<br>GA,<br>Lec<br>GA,<br>Lec<br>ck Pr<br>g in F | ciator<br>Hoj<br>ient r<br>puts,<br>er St<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>dicat<br>eture<br>nd, C<br>e<br>cure<br>ropag<br>fuzzy | r, Ba<br>p fi<br>espon<br>roble<br>Solv:<br>ructu<br>Hrs:<br>e<br>Viot'<br>Hrs:<br>creati<br>rator<br>Hrs:<br>orith<br>ation  | eld<br>nse<br>em:<br>ing<br>ire,<br>s<br>s<br>on<br>s,<br>uns<br>t, |



### M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

3.Genetic Algorithms by David E. Gold Berg, Pearson Education India, 2006. 4.Neural Networks & Fuzzy Sytems- Kosko.B., PHI, Delhi,1994.

### **Reference Books:**

- 1. Artificial Neural Networks Dr. B. Yagananarayana, 1999, PHI, New Delhi.
- 2.An introduction to Genetic Algorithms Mitchell Melanie, MIT Press, 1998
- 3.Fuzzy Sets, Uncertainty and Information- Klir G.J. & Folger. T. A., PHI, Delhi, 1993.



### M.TECH. IN EMBEDDED SYSTEMS

| Course Code        | DESIGN OF FAULT TOLERANT SYSTEMS                                                                                | L      | Т             | Р      | C   |
|--------------------|-----------------------------------------------------------------------------------------------------------------|--------|---------------|--------|-----|
| 21D06103b          | <b>Program Elective – IV</b>                                                                                    | 3      | 0             | 0      | 3   |
|                    | Semester                                                                                                        |        | Ι             | [      |     |
|                    |                                                                                                                 |        |               |        |     |
| Course Objectiv    |                                                                                                                 |        |               |        |     |
| ·                  | de broad understanding of fault diagnosis and tolerant design appro                                             |        |               |        |     |
|                    | rate the framework of test pattern generation using semi and full aut                                           | oma    | tic           |        |     |
| approach           |                                                                                                                 |        |               |        |     |
| -                  | re the knowledge of scan architectures.                                                                         |        |               |        |     |
| 1                  | re the knowledge of design of built-in-self test.                                                               |        |               |        |     |
|                    | es (CO): Student will be able to                                                                                |        |               |        |     |
|                    | proad understanding of fault diagnosis and tolerant design approach                                             |        |               |        |     |
|                    | the framework of test pattern generation using semi and full autom                                              | atic   | appro         | bach.  |     |
| ·                  | the knowledge of scan architectures.                                                                            |        |               |        |     |
|                    | the knowledge of design of built-in-self test.                                                                  |        |               |        |     |
| UNIT - I           |                                                                                                                 | Leo    | ture          | Hrs:   |     |
| Fault Tolerant I   | 0                                                                                                               |        |               |        |     |
| <b>•</b>           | Reliability concepts, Failures & faults, Reliability and Failure rate, I                                        |        |               |        | en  |
| •                  | ean time between failure, maintainability and availability, reliability                                         | of s   | eries,        | ,      |     |
|                    | llel-series combinational circuits.                                                                             |        |               |        |     |
| Fault Tolerant I   | 0                                                                                                               |        |               |        |     |
|                    | tatic, dynamic, hybrid, triple modular redundant system (TMR), 5M                                               |        |               |        |     |
|                    | echniques, Data redundancy, Time redundancy and software Redun                                                  |        |               |        | .S. |
| UNIT - II          |                                                                                                                 | Lec    | ture          | Hrs:   |     |
| 0                  | rcuits & Fail safe Design                                                                                       | lr     |               | :      |     |
|                    | f self checking circuits, Design of Totally self checking checker, Ch                                           | еске   | ers us        | ing i  | n   |
|                    | erger code, Low cost residue code.<br>- Strongly fault secure circuits, fail safe design of sequential circuits |        | 10 <b>n</b> 0 | rtitio | n   |
|                    | r code, totally self checking PLA design                                                                        | s usii | ig pa         | nuio   | 11  |
| UNIT - III         | r code, totally self checking i LA design                                                                       | Leo    | ture          | Hree   |     |
| Design for Testa   | hility                                                                                                          | Lu     | iure .        | ins.   |     |
|                    | ility for combinational circuits: Basic concepts of Testability, Contra                                         | rollai | hility        | and    |     |
| 0                  | e Reed Muller's expansion technique, use of control and syndrome                                                |        | •             |        | าร  |
|                    | ility by means of scan                                                                                          | teste  |               | 05151  | 15. |
|                    | Festable, Testability Insertion, Full scan DFT technique- Full scan i                                           | nser   | ion.          | flin-  |     |
|                    | Full scan design and Test, Scan Architectures-full scan design, Shad                                            |        |               |        | FT. |
|                    | ods, multiple scan design, other scan designs.                                                                  |        | - 0           |        | ,   |
| UNIT - IV          |                                                                                                                 | Leo    | ture          | Hrs:   |     |
| Logic Built-in-se  | elf-test                                                                                                        |        |               |        | -   |
| 0                  | mory-based BIST,BIST effectiveness, BIST types, Designing a BIS                                                 | Т, Т   | est P         | atteri | 1   |
| Generation-Enga    | ging TPGs, exhaustive counters, ring counters, twisted ring counter                                             | , Lir  | lear          |        |     |
| feedback shift rea | gister, Output Response Analysis-Engaging ORA's, One's counter,                                                 | tran   | sition        |        |     |
| counter, parity ch | necking, Serial LFSRs, Parallel Signature analysis, BIST architectur                                            | es-E   | SIST          | relate | ed  |
|                    | centralised and separate Board-level BIST architecture, Built-in ev                                             |        |               |        | elf |
|                    | dom Test socket(RTS), LSSD On-chip self test, Self -testing using                                               |        |               | 1      |     |
|                    | nt BIST, BILBO, Enhancing coverage, RT level BIST design-CUT                                                    |        | •             |        |     |
|                    | nthesis, RTS BIST insertion, Configuring the RTS BIST, incorpora                                                | ating  |               |        |     |
| configurations in  | BIST, Design of STUMPS, RTS and STUMPS results.                                                                 |        |               |        |     |



| UI                                                                                                 | NIT - V        |                                                                | Lecture Hrs:      |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------|-------------------|--|--|--|
| Standard IEEE Test Access Methods                                                                  |                |                                                                |                   |  |  |  |
| Boundary Scan Basics, Boundary scan architecture- Test access port, Boundary scan registers, TAP   |                |                                                                |                   |  |  |  |
| controller, the decoder unit, select and other units, Boundary scan Test Instructions-Mandatory    |                |                                                                |                   |  |  |  |
| instructions, Board level scan chain structure-One serial scan chain, multiple-scan chain with one |                |                                                                |                   |  |  |  |
| control test port, multiple-scan chains with one TDI, TDO but multiple TMS, Multiple-scan chain,   |                |                                                                |                   |  |  |  |
| multiple access port, RT Level boundary scan-inserting boundary scan test hardware for CUT, Two    |                |                                                                |                   |  |  |  |
| module test case, virtual boundary scan tester, Boundary Scan Description language.                |                |                                                                |                   |  |  |  |
| Textbooks:                                                                                         |                |                                                                |                   |  |  |  |
| 1.                                                                                                 | Fault Tole     | erant & Fault Testable Hardware Design- Parag K.Lala,PHI, 1984 | •                 |  |  |  |
| 2.                                                                                                 | Digital Syst   | em Test and Testable Design using HDL models and Architecture  | es -              |  |  |  |
|                                                                                                    | Zainalabedi    | nNavabi, Springer International Ed.,                           |                   |  |  |  |
| Reference Books:                                                                                   |                |                                                                |                   |  |  |  |
| 1.                                                                                                 | Digital Systen | ns Testing and Testable Design-MironAbramovici, Melvin A.Breu  | uer and Arthur D. |  |  |  |
|                                                                                                    | Friedman, Ja   | ico Books                                                      |                   |  |  |  |
| 2                                                                                                  | Econtials of   | Electronic Testing Dyshaell & VishyseniD A served Springers    |                   |  |  |  |

- 2. Essentials of Electronic Testing- Bushnell & VishwaniD. Agarwal, Springers.
- 3. Design for Test for Digital IC's and Embedded Core Systems- Alfred L. Crouch, 2008



# M.TECH. IN EMBEDDED SYSTEMS

| Course Code                                                                                                                                            | HARDWARE AND SOFTWARE CO-DESIGN                                                   | L          | Т      | P           | С          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------|--------|-------------|------------|--|--|--|
| 21D06204a                                                                                                                                              | Program Elective – IV                                                             | 3          | 0      | 0           | 3          |  |  |  |
|                                                                                                                                                        | Semester                                                                          |            | II     |             |            |  |  |  |
|                                                                                                                                                        |                                                                                   |            |        |             |            |  |  |  |
| Course Objectives:                                                                                                                                     |                                                                                   |            |        |             |            |  |  |  |
| -                                                                                                                                                      | he knowledge on various models of Co-design.                                      |            |        |             |            |  |  |  |
| • To explore the interrelationship between Hardware and software in a embedded system                                                                  |                                                                                   |            |        |             |            |  |  |  |
| • To acquire the knowledge of firmware development process and tools during Co-design.                                                                 |                                                                                   |            |        |             |            |  |  |  |
| To understand validation methods and adaptability.                                                                                                     |                                                                                   |            |        |             |            |  |  |  |
|                                                                                                                                                        | es (CO): Student will be able to                                                  |            |        |             |            |  |  |  |
| <b>^</b>                                                                                                                                               | knowledge on various models of Co-design.                                         |            |        |             |            |  |  |  |
| • Explore the interrelationship between Hardware and software in a embedded system                                                                     |                                                                                   |            |        |             |            |  |  |  |
| <b>^</b>                                                                                                                                               | knowledge of firmware development process and tools during Co-d                   | esign.     |        |             |            |  |  |  |
|                                                                                                                                                        | validation methods and adaptability.                                              | -          |        |             |            |  |  |  |
| UNIT - I                                                                                                                                               |                                                                                   | Lectu      | ire H  | Irs:        |            |  |  |  |
| Co- Design Issu                                                                                                                                        |                                                                                   | <b>a</b> a | .1     |             |            |  |  |  |
|                                                                                                                                                        | els, Architectures, Languages, A Generic Co-design Methodology.                   | Co-S       | ynthe  | esis        |            |  |  |  |
| Algorithms                                                                                                                                             | no anneth an a allo an islaman handrunan a an ferrana maneticiani a a diataiku ta | d          |        |             |            |  |  |  |
| synthesis.                                                                                                                                             | re synthesis algorithms: hardware – software partitioning distribute              | a syste    | em c   | 0-          |            |  |  |  |
| UNIT - II                                                                                                                                              |                                                                                   | Lectu      | iro L  | Irai        |            |  |  |  |
| Prototyping and                                                                                                                                        | <br>  Emulation                                                                   | Lecu       | 1101   | <u>115.</u> |            |  |  |  |
| Prototyping and                                                                                                                                        |                                                                                   | onmer      | nte    | fut         | ure        |  |  |  |
| developments in                                                                                                                                        |                                                                                   |            |        | syste       |            |  |  |  |
| communication i                                                                                                                                        |                                                                                   | mique      |        | syst        |            |  |  |  |
| Target Architec                                                                                                                                        |                                                                                   |            |        |             |            |  |  |  |
|                                                                                                                                                        | cialization techniques, System Communication infrastructure, Ta                   | rget A     | rchi   | tecti       | ure        |  |  |  |
|                                                                                                                                                        | System classes, Architecture for control dominated systems (8051-                 |            |        |             |            |  |  |  |
|                                                                                                                                                        | e control), Architecture for Data dominated systems (ADSP2106                     |            |        |             |            |  |  |  |
| Mixed Systems.                                                                                                                                         |                                                                                   |            |        |             | <i>,</i> . |  |  |  |
| UNIT - III                                                                                                                                             |                                                                                   | Lectu      | ire H  | Irs:        |            |  |  |  |
| Compilation Te                                                                                                                                         | chniques and Tools for Embedded Processor Architectures                           |            |        |             |            |  |  |  |
|                                                                                                                                                        | ed architectures, embedded software development needs, compilat                   | tion te    | chno   | logi        | es,        |  |  |  |
|                                                                                                                                                        | ration in a compiler development environment.                                     |            |        |             |            |  |  |  |
| UNIT - IV                                                                                                                                              |                                                                                   | Lectu      | ire H  | Irs:        |            |  |  |  |
| <u> </u>                                                                                                                                               | tion and Verification                                                             |            |        |             |            |  |  |  |
|                                                                                                                                                        | n, the co-design computational model, concurrency coordinating co                 |            |        |             |            |  |  |  |
| <b>•</b>                                                                                                                                               | erfacing components, design verification, implementation verificat                | ion, ve    | erific | atio        | n          |  |  |  |
| tools, interface v                                                                                                                                     | erification.                                                                      | *          |        | -           |            |  |  |  |
| UNIT - V                                                                                                                                               |                                                                                   | Lectu      | ire H  | Irs:        |            |  |  |  |
| Languages for System – Level Specification and Design-I                                                                                                |                                                                                   |            |        |             |            |  |  |  |
| System – level specification, design representation for system level synthesis, system level                                                           |                                                                                   |            |        |             |            |  |  |  |
| specification languages,                                                                                                                               |                                                                                   |            |        |             |            |  |  |  |
| Languages for System – Level Specification and Design-II<br>Heterogeneous specifications and multi language co-simulation, the cosyma system and lycos |                                                                                   |            |        |             |            |  |  |  |
| system.                                                                                                                                                |                                                                                   |            |        |             |            |  |  |  |
| Textbooks:                                                                                                                                             |                                                                                   |            |        |             |            |  |  |  |



## M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

- 1. Hardware / Software Co- Design Principles and Practice Jorgen Staunstrup, Wayne Wolf Springer, 2009.
- 2. Hardware / Software Co- Design Giovanni De Micheli, MariagiovannaSami,Kluwer Academic Publishers, 2002.

## **Reference Books:**

1. A Practical Introduction to Hardware/Software Co-design -Patrick R. Schaumont, Springer, 2010.



### M.TECH. IN EMBEDDED SYSTEMS

| <b>Course Code</b>                                                                                                                                                                                     | EMBEDDED SYSTEM DESIGN LAB                                                                                                     | L       | Т              | Р          | С    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------|----------------|------------|------|--|--|--|--|
| 21D06205                                                                                                                                                                                               |                                                                                                                                | 0       | 0              | 4          | 2    |  |  |  |  |
|                                                                                                                                                                                                        | Semester                                                                                                                       |         | <u> </u>       | Π          |      |  |  |  |  |
|                                                                                                                                                                                                        | Semester                                                                                                                       |         |                |            |      |  |  |  |  |
| Course Objective                                                                                                                                                                                       | s:                                                                                                                             |         |                |            |      |  |  |  |  |
| ě                                                                                                                                                                                                      | rize with embedded systems programming concepts                                                                                |         |                |            |      |  |  |  |  |
| <ul> <li>To implement different embedded communication and interfacing protocols</li> </ul>                                                                                                            |                                                                                                                                |         |                |            |      |  |  |  |  |
| Course Outcomes                                                                                                                                                                                        | s (CO):                                                                                                                        |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | e with embedded systems programming concepts                                                                                   |         |                |            |      |  |  |  |  |
| Implement                                                                                                                                                                                              | t different embedded communication and interfacing protocols                                                                   | 5       |                |            |      |  |  |  |  |
| List of Experimen                                                                                                                                                                                      | nts:                                                                                                                           |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        |                                                                                                                                |         |                |            |      |  |  |  |  |
| 1. Functional Testi                                                                                                                                                                                    |                                                                                                                                |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | to the device into a stable functional state by porting desktop                                                                | envi    | ronm           | ent w      | ith  |  |  |  |  |
| necessary package                                                                                                                                                                                      |                                                                                                                                |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | lay on to other Systems                                                                                                        |         |                |            |      |  |  |  |  |
| 0                                                                                                                                                                                                      | ilable laptop/desktop displays as a display for the device using                                                               | g SSF   |                | nt & 2     | XII  |  |  |  |  |
| display server.                                                                                                                                                                                        |                                                                                                                                |         |                |            |      |  |  |  |  |
| 3. GPIO Program                                                                                                                                                                                        |                                                                                                                                |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | vailable GPIO pins of the corresponding device using native p ng of I/O devices like LED/Switch etc., and testing the function |         |                | ng         |      |  |  |  |  |
| 4. Interfacing Chr                                                                                                                                                                                     |                                                                                                                                | Jiiaiii | y.             |            |      |  |  |  |  |
| 0                                                                                                                                                                                                      | a programmable Texas Instruments watch which can be used t                                                                     | for m   | ultinl         | P          |      |  |  |  |  |
|                                                                                                                                                                                                        | control, Mouse operations etc., Exploit the features of the dev                                                                |         |                |            | ng   |  |  |  |  |
| with devices.                                                                                                                                                                                          |                                                                                                                                | 100 0   | <i>y</i> 11100 |            | -9   |  |  |  |  |
|                                                                                                                                                                                                        | ol Based On Light Intensity                                                                                                    |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | sors, monitor the surrounding light intensity & automatically                                                                  | turn (  | ON/O           | FF th      | e    |  |  |  |  |
|                                                                                                                                                                                                        | 's by taking some pre-defined threshold light intensity value.                                                                 |         |                |            |      |  |  |  |  |
| 6. Battery Voltage                                                                                                                                                                                     | Range Indicator                                                                                                                |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | e level of the battery and indicating the same using multiple L                                                                |         |                |            |      |  |  |  |  |
| 3V battery and 3 LEDs, turn on 3 LED s for 2-3V, 2 LEDs for 1-2V, 1 LED for 0.1-1V & turn off                                                                                                          |                                                                                                                                |         |                |            |      |  |  |  |  |
| all for 0V)                                                                                                                                                                                            |                                                                                                                                |         |                |            |      |  |  |  |  |
| 7. Dice Game Sim                                                                                                                                                                                       |                                                                                                                                |         |                |            | _    |  |  |  |  |
|                                                                                                                                                                                                        | e conventional dice, generate a random value similar to dice v                                                                 |         |                |            |      |  |  |  |  |
| •                                                                                                                                                                                                      | 2 LCD. A possible extension could be to provide the user with                                                                  | optic   | on of          | select     | ing  |  |  |  |  |
| single or double di                                                                                                                                                                                    |                                                                                                                                |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | S News Feed On Display Interface                                                                                               | This    | oon h          | o odo      | ntad |  |  |  |  |
| Displaying the RSS news feed headlines on a LCD display connected to device. This can be adapted to other websites like twitter or other information websites. Python can be used to acquire data from |                                                                                                                                |         |                |            |      |  |  |  |  |
| the internet.                                                                                                                                                                                          | the twitter of other information websites. I ython call be used t                                                              | 0 acq   | une            | Jaia I     | iom  |  |  |  |  |
| 9. Porting Open w                                                                                                                                                                                      | r.t the Device                                                                                                                 |         |                |            |      |  |  |  |  |
|                                                                                                                                                                                                        | device while connecting to a WiFi network using a USB dong                                                                     | gle an  | d at t         | he sa      | me   |  |  |  |  |
|                                                                                                                                                                                                        | ireless access point to the dongle.                                                                                            | ul      |                | 5 <b>u</b> |      |  |  |  |  |
| 10. Hosting a web                                                                                                                                                                                      |                                                                                                                                |         |                |            |      |  |  |  |  |
| -                                                                                                                                                                                                      | ng a simple website(static/dynamic) on the device and make it                                                                  | t acce  | ssible         | e onli     | ne.  |  |  |  |  |
| -                                                                                                                                                                                                      | install server (eg: Apache) and thereby host the website.                                                                      |         |                |            |      |  |  |  |  |
| 11. Webcam Serv                                                                                                                                                                                        | er                                                                                                                             |         |                |            |      |  |  |  |  |



### M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

Interfacing the regular USB webcam with the device and turn it into fully functional IP webcam & test the functionality. 12. FM Transmission Transforming the device into a regular FM transmitter capable of transmitting audio at desired frequency (generally 88-108 Mhz)

**Software Requirements:** Keil / Python **Hardware Requirements:** Arduino/Raspbery Pi/Beaglebone


# M.TECH. IN EMBEDDED SYSTEMS

| Course    | Code     | EMBEDDED PROGRAMMING LAB                                | L       | Т   | Р     | C |
|-----------|----------|---------------------------------------------------------|---------|-----|-------|---|
| 21D55     | 202      |                                                         | 0       | 0   | 4     | 2 |
|           |          | Semester                                                |         |     | II    |   |
| Course    | Objecti  | ves:                                                    |         |     |       |   |
| • [       | Γo unde  | erstand the concepts of Embedded 'C' programming        |         |     |       |   |
| • [       | Го impl  | ement given program on 8051 microcontroller             |         |     |       |   |
| • 7       | Го impl  | ement given program on LPC2148 microcontroller          |         |     |       |   |
|           |          | nes (CO):                                               |         |     |       |   |
| • 1       | Underst  | and the concepts of Embedded 'C' programming            |         |     |       |   |
|           |          | ent given program on 8051 microcontroller               |         |     |       |   |
|           |          | ent given program on LPC2148 microcontroller            |         |     |       |   |
| List of F | -        |                                                         |         |     |       |   |
|           |          | rogramming and testing using 8051 advanced development  | hoard   | and | KFI   | T |
| tools.    | icu c p  | Togramming and testing using 0051 advanced development  | Juaru   | anu | 18121 | L |
| ••••      | (i) Prog | ram to perform arithmetic operations.                   |         |     |       |   |
| 1. (      |          | Program to perform sorting of numbers.                  |         |     |       |   |
| 2.        |          | n to shift LED's Left and right.                        |         |     |       |   |
|           |          | n for DIP switch interface.                             |         |     |       |   |
|           |          | n to display message in LCD 8 bit mode.                 |         |     |       |   |
|           |          | n to display picture in GLCD 128X64.                    |         |     |       |   |
|           | •        | n to send data serially through serial port.            |         |     |       |   |
| 7. 1      | Progran  | n to display I2C RTC(DS1307) to Hyper terminal window.  |         |     |       |   |
| 8. 1      | Progran  | n to display digital temperature sensor output.         |         |     |       |   |
| 9. 1      | Progran  | n for 4X4 matrix keyboard with LCD.                     |         |     |       |   |
|           |          | n to interface stepper motor.                           |         |     |       |   |
| 11. 1     | Progran  | n to interface relay.                                   |         |     |       |   |
|           |          | rogramming and testing using LPC2148 development kit(Re | eal tin | ne  |       |   |
| environ   |          |                                                         |         |     |       |   |
|           |          | n to interface LED and implement Multi-tasking.         |         |     |       |   |
|           |          | n to display RTC-ADC on LCD.                            |         |     |       |   |
|           | •        | n to display message on GLCD                            |         |     |       |   |
|           |          | irements:                                               |         |     |       |   |
|           |          | eil for ARM                                             |         |     |       |   |
|           |          | uirements:                                              |         |     |       |   |
| 8051 De   | velopm   | ent boards, LPC2148 Development boards                  |         |     |       |   |



| Course Code      | EMBEDDED SYSTEMS PROTOCOLS                                                  | L      | Т      | Р      | C    |
|------------------|-----------------------------------------------------------------------------|--------|--------|--------|------|
| 21D06301a        | <b>Program Elective – V</b>                                                 | 3      | 0      | 0      | 3    |
|                  | Semester                                                                    |        | II     | I      |      |
|                  |                                                                             |        |        |        |      |
| Course Objecti   | ves:                                                                        |        |        |        |      |
| • To acquire k   | nowledge on communication protocols of connecting Embedded S                | ysten  | ıs.    |        |      |
| • To understa    | nd the design parameters of USB and CAN bus protocols.                      | •      |        |        |      |
|                  | nd the design issues of Ethernet in Embedded networks.                      |        |        |        |      |
|                  | he knowledge of wireless protocols in Embedded domain.                      |        |        |        |      |
|                  | nes (CO): Student will be able to                                           |        |        |        |      |
|                  | wledge on communication protocols of connecting Embedded Syst               | ems.   |        |        |      |
| <u>^</u>         | the design parameters of USB and CAN bus protocols.                         |        |        |        |      |
|                  | the design issues of Ethernet in Embedded networks.                         |        |        |        |      |
|                  | knowledge of wireless protocols in Embedded domain.                         |        |        |        |      |
| UNIT - I         |                                                                             | Lec    | ure I  | Irs    |      |
|                  | nmunication Protocols                                                       | 200    |        |        |      |
|                  | vorking: Introduction – Serial/Parallel Communication – Serial com          | muni   | catio  | n      |      |
|                  | 2 standard – RS485 – Synchronous Serial Protocols -Serial Periphe           |        |        |        |      |
|                  | egrated Circuits (I2C) – PC Parallel port programming - ISA/PCI B           |        |        |        |      |
| Firewire.        |                                                                             | . I    |        |        |      |
| UNIT - II        |                                                                             | Lect   | ure F  | Irs:   |      |
| USB and CAN      | Bus                                                                         |        |        |        |      |
|                  | duction – Speed Identification on the bus – USB States – USB bus            | comr   | nunic  | atior  | ı    |
|                  | ow types - Enumeration - Descriptors - PIC 18 Microcontroller US            |        |        |        |      |
| Programs –CAN    | Bus – Introduction - Frames –Bit stuffing –Types of errors –Nom             | inal B | it Ti  | ning   | _    |
| PIC microcontro  | oller CAN Interface – A simple application with CAN.                        |        |        | -      |      |
| UNIT - III       |                                                                             | Lect   | ure H  | Irs:   |      |
| Ethernet Basics  | 5                                                                           |        |        |        |      |
| Elements of a    | network - Inside Ethernet - Building a Network: Hardware                    | optio  | ns –   | Cab    | les, |
| Connections and  | d network speed - Design choices: Selecting components -Ethe                | rnet ( | Contr  | oller  | s –  |
| Using the intern | et in local and internet communications - Inside the Internet protoc        | ol.    |        |        |      |
| UNIT - IV        |                                                                             | Lect   | ure H  | Irs:   |      |
| Embedded Eth     |                                                                             |        |        |        |      |
| Exchanging mes   | sages using UDP and TCP – Serving web pages with Dynamic Date               | ta – S | ervin  | g we   | b    |
|                  | nd to user Input – Email for Embedded Systems – Using FTP – Ke              | eping  | Devi   | ces a  | und  |
| Network secure.  |                                                                             |        |        |        |      |
| UNIT - V         |                                                                             | Lect   | ure H  | Irs:   |      |
|                  | dded Networking                                                             |        |        |        |      |
|                  | networks - Introduction - Applications - Network Topology - Loc             |        |        |        |      |
|                  | - Energy efficient MAC protocols $-\text{SMAC}-\text{Energy}$ efficient and | robus  | st rou | ting - | -    |
| Data Centric rou | iting.                                                                      |        |        |        |      |
| Textbooks:       |                                                                             |        |        |        |      |
|                  | stems Design: A Unified Hardware/Software Introduction - Frank              | Vahio  | l, Tor | ıy     |      |
|                  | 2 Wiley Publications, 2002.                                                 |        | -      | -      |      |
|                  | Complete: Programming, interfacing and using the PCs parallel prin          | nter p | ort    | lan    |      |
|                  | n Publications, 1996.                                                       |        |        |        |      |
| Reference Book   | KS:                                                                         |        |        |        |      |



# M.TECH. IN EMBEDDED SYSTEMS

# **COURSE STRUCTURE & SYLLABI**

1. Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F series - Dogan Ibrahim, Elsevier 2008.

2. Embedded Ethernet and Internet Complete - Jan Axelson, Penram publications, 2003.

3. Networking Wireless Sensors - BhaskarKrishnamachari , Cambridge press 2005.



| Course Code            | COMMUNICATION BUSES AND INTERFACES                                         | L       | Т      | Р      | С          |
|------------------------|----------------------------------------------------------------------------|---------|--------|--------|------------|
| 21D06301c              | Program Elective – V                                                       | 3       | 0      | 0      | 3          |
|                        | Semester                                                                   |         | II     | ſ      |            |
|                        |                                                                            |         |        |        |            |
| <b>Course Objectiv</b> | es:                                                                        |         |        |        |            |
| To under               | stand the concepts of different types of serial buses.                     |         |        |        |            |
| To learn               | about CAN, PCIe and USB architecture                                       |         |        |        |            |
| To learn               | about data streaming using serial communication protocols                  |         |        |        |            |
| Course Outcom          | es (CO): Student will be able to                                           |         |        |        |            |
| Understa               | nd the concepts of different types of serial buses.                        |         |        |        |            |
| • Learn ab             | out CAN, PCIe and USB architecture                                         |         |        |        |            |
| • Learn ab             | out data streaming using serial communication protocols                    |         |        |        |            |
| UNIT - I               |                                                                            | Lect    | ure H  | Irs:   |            |
| Serial Busses- C       | ables, Serial busses, serial versus parallel, Data and Control Signal      | l- data | a fran | ne, da | ata        |
| rate, features, Lin    | nitations and applications of RS232, RS485, I2C, SPI                       |         |        |        |            |
| UNIT - II              |                                                                            | Lect    | ure H  | Irs:   |            |
| CAN ARCHITE            | CTURE- ISO 11898-2, ISO 11898-3, Data Transmission- ID allo                |         |        |        |            |
|                        | Application layers, Object layer, Transfer layer, Physical layer, Fra      |         |        |        | ata        |
|                        | ame, Error frame, Over load frame, Ack slot, Inter frame spacing,          |         |        |        |            |
| Applications.          |                                                                            |         |        |        |            |
| UNIT - III             |                                                                            | Lect    | ure F  | Irs:   |            |
| PCIe                   |                                                                            |         |        |        |            |
| Revision, Config       | uration space- configuration mechanism, Standardized registers, B          | us en   | umer   | ation  | l <b>,</b> |
| Hardware and Sc        | ftware implementation, Hardware protocols, Applications.                   |         |        |        |            |
| UNIT - IV              |                                                                            | Lect    | ure F  | Irs:   |            |
| USB                    |                                                                            |         |        |        |            |
|                        | Control transfers, Bulk transfer, Interrupt transfer, Isochronous transfer |         |        |        |            |
|                        | vice detection, Default state, Addressed state, Configured state, en       |         |        |        |            |
|                        | riptor types and contents- Device descriptor, configuration description    | otor, I | nterfa | ace    |            |
|                        | oint descriptor, String descriptor. Device driver.                         |         |        |        |            |
| UNIT - V               |                                                                            |         | ure F  | Irs:   |            |
|                        | Serial Communication Protocal- Serial Front Panel Data Port(SI             |         |        |        |            |
| , v                    | low control, serial FPDP transmission frames, fiber frames and co          | pper o  | cable. |        |            |
| Textbooks:             |                                                                            |         |        |        |            |
| -                      | sive Guide to controller Area Network – Wilfried Voss, Copperhil           | l Med   | ia     |        |            |
| Corporation, 2nd       |                                                                            | . ~     |        | _      |            |
|                        | nplete-COM Ports, USB Virtual Com Ports and Ports for Embedde              | d Sys   | tems   | Jan    |            |
|                        | ew Research, 2nd Ed.,                                                      |         |        |        |            |
| Reference Book         |                                                                            |         |        |        |            |
| L .                    | e – Jan Axelson, Penram Publications.                                      |         |        |        |            |
| 2.PCI Express Te       | echnology – Mike Jackson, Ravi Budruk, Mindshare Press.                    |         |        |        |            |



## M.TECH. IN EMBEDDED SYSTEMS

| 21D55301a       Program Elective - V       3       0       0       3         Semester         III    Course Objectives:          •       To describe the various elements that make an industrial robot systems         •       To discuss various applications of industrial robot systems         •       To design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox    Course Outcomes (CO): Student will be able to          •       Describe the various elements that make an industrial robot system         •       Discuss various applications of industrial robot systems         •       Analyze robot manipulators in terms of their kinematics, kinetics, and control         •       Describe the various elements that make an industrial robot system         •       Describe the various elements of their kinematics, kinetics, and control         •       Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox         UNIT • I       Lecture Hrs:         Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.         UNIT • II       Lecture Hrs:         Kinematics       Inverse Kinematics:Kinematics , Mecha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROBOTICS                                                            | L      | Т       | Р        | С   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------|---------|----------|-----|
| Course Objectives:         • To describe the various elements that make an industrial robot system         • To discuss various applications of industrial robot systems         • To analyze robot manipulators in terms of their kinematics, kinetics, and control         • To design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox         Course Outcomes (CO): Student will be able to         • Describe the various elements that make an industrial robot system         • Discuss various applications of industrial robot systems         • Analyze robot manipulators in terms of their kinematics, kinetics, and control         • Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox         UNIT - I       Lecture Hrs:         Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems, Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.         UNIT - II       Lecture Hrs:         Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.         UNIT - III       Lecture Hrs:         Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.                                                                                                                                                                                                                                                                                                                                                                                            | 21D55301a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Program Elective – V                                                | 3      | 0       | 0        | 3   |
| To describe the various elements that make an industrial robot system     To discuss various applications of industrial robot systems     To analyze robot manipulators in terms of their kinematics, kinetics, and control     To design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox     Describe the various elements that make an industrial robot system     Discuss various applications of their kinematics, kinetics, and control     Describe the various elements that make an analyze their performance, through running simulations using a MATLAB-based Robot Toolbox     UNIT - I     Lecture Hrs:     Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems, Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.     UNIT - II     Lecture Hrs:     Kinematics – Inverse Kinematics; Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.     UNIT - III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Semester                                                            |        | II      | I        |     |
| To describe the various elements that make an industrial robot system     To discuss various applications of industrial robot systems     To analyze robot manipulators in terms of their kinematics, kinetics, and control     To design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox     Describe the various elements that make an industrial robot system     Discuss various applications of their kinematics, kinetics, and control     Describe the various elements that make an analyze their performance, through running simulations using a MATLAB-based Robot Toolbox     UNIT - I     Lecture Hrs:     Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems, Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.     UNIT - II     Lecture Hrs:     Kinematics – Inverse Kinematics; Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.     UNIT - III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| To discuss various applications of industrial robot systems     To analyze robot manipulators in terms of their kinematics, kinetics, and control     To design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox Course Outcomes (CO): Student will be able to     Describe the various elements that make an industrial robot system     Discuss various applications of industrial robot systems     Analyze robot manipulators in terms of their kinematics, kinetics, and control     Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox UNIT - I     Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox UNIT - I     Lecture Hrs: Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems, Human arm Characteristics, Cartesian, Cylindrical, Polar, coordinate frames, mapping transform. UNIT - II     Lecture Hrs: Kinematics – Inverse Kinematics:Kinematics, Mechanical structure and notations, description of links and joints, DenavitHatenberg notation, manipulator transformation matrix, examples inverse kinematics. UNIT - III     Lecture Hrs: Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning. UNIT - IV     Lecture Hrs: Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision. UNIT - V     Lecture Hrs: Robots and Applications.: Industrial Applications – Processing applications – Assembly                                    | Course Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6:                                                                  |        |         |          |     |
| To analyze robot manipulators in terms of their kinematics, kinetics, and control     To design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox Course Outcomes (CO): Student will be able to     Describe the various elements that make an industrial robot system     Discuss various applications of industrial robot systems     Analyze robot manipulators in terms of their kinematics, kinetics, and control     Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox UNIT - I     Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox UNIT - I     Lecture Hrs: Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems, Human arm Characteristics, Cartesian, Cylindrical, Polar, coordinate frames, mapping transform. UNIT - II     Lecture Hrs: Kinematics - Inverse Kinematics:Kinematics, Mechanical structure and notations , description of links and joints, DenavitHatenberg notation, manipulator transformation matrix, examples inverse kinematics. UNIT - III     Lecture Hrs: Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning. UNIT - IV     Lecture Hrs: Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors, Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robot vision. UNIT - V     Lecture Hrs: Robots and Applications.: Industrial Applications – Processing applications – Assembly | <ul> <li>To describ</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e the various elements that make an industrial robot system         |        |         |          |     |
| To design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox Course Outcomes (CO): Student will be able to     Describe the various elements that make an industrial robot system     Discuss various applications of industrial robot systems     Analyze robot manipulators in terms of their kinematics, kinetics, and control     Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox UNIT - I     Lecture Hrs: Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform. UNIT - II     Lecture Hrs: Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics. UNIT - III     Lecture Hrs: Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning. UNIT - IV     Lecture Hrs: Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision. UNIT - V     Lecture Hrs: Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                    | <ul> <li>To discuss</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | various applications of industrial robot systems                    |        |         |          |     |
| simulations using a MATLAB-based Robot Toolbox Course Outcomes (CO): Student will be able to Describe the various elements that make an industrial robot system Discuss various applications of industrial robot systems Analyze robot manipulators in terms of their kinematics, kinetics, and control Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox UNIT - I Lecture Hrs: Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform. UNIT - II Lecture Hrs: Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics. UNIT - III Lecture Hrs: Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning. UNIT - IV Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision. UNIT - V Robot Sand Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                   |        |         |          |     |
| Course Outcomes (CO): Student will be able to         • Describe the various elements that make an industrial robot system         • Discuss various applications of industrial robot systems         • Analyze robot manipulators in terms of their kinematics, kinetics, and control         • Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox         UNIT - I       Lecture Hrs:         Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.         UNIT - II       Lecture Hrs:         Kinematics - Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.         UNIT - III       Lecture Hrs:         Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.         UNIT - IV       Lecture Hrs:         Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | thro   | ugh     | runn     | ing |
| <ul> <li>Describe the various elements that make an industrial robot system</li> <li>Discuss various applications of industrial robot systems</li> <li>Analyze robot manipulators in terms of their kinematics, kinetics, and control</li> <li>Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox</li> <li>UNIT - I</li> <li>Lecture Hrs:</li> <li>Introduction &amp; Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.</li> <li>UNIT - II</li> <li>Lecture Hrs:</li> <li>Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.</li> <li>UNIT - III</li> <li>Lecture Hrs:</li> <li>Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.</li> <li>UNIT - IV</li> <li>Lecture Hrs:</li> <li>Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.</li> <li>UNIT - V</li> <li>Lecture Hrs:</li> <li>Robots and Applications.: Industrial Applications – Processing applications – Assembly</li> </ul>                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| <ul> <li>Discuss various applications of industrial robot systems</li> <li>Analyze robot manipulators in terms of their kinematics, kinetics, and control</li> <li>Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox</li> <li>UNIT - I</li> <li>Lecture Hrs:</li> <li>Introduction &amp; Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.</li> <li>UNIT - II</li> <li>Lecture Hrs:</li> <li>Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.</li> <li>UNIT - III</li> <li>Lecture Hrs:</li> <li>Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.</li> <li>UNIT - IV</li> <li>Lecture Hrs:</li> <li>Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.</li> <li>UNIT - V</li> <li>Lecture Hrs:</li> <li>Robots and Applications.: Industrial Applications – Processing applications – Assembly</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Course Outcomes</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (CO): Student will be able to                                       |        |         |          |     |
| <ul> <li>Analyze robot manipulators in terms of their kinematics, kinetics, and control</li> <li>Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox</li> <li>UNIT - I</li> <li>Lecture Hrs:</li> <li>Introduction &amp; Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.</li> <li>UNIT - II</li> <li>Lecture Hrs:</li> <li>Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.</li> <li>UNIT - III</li> <li>Lecture Hrs:</li> <li>Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.</li> <li>UNIT - IV</li> <li>Lecture Hrs:</li> <li>Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors ; Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.</li> <li>UNIT - V</li> <li>Lecture Hrs:</li> <li>Robots and Applications.: Industrial Applications – Processing applications – Assembly</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Describe the second seco</li></ul> | ne various elements that make an industrial robot system            |        |         |          |     |
| <ul> <li>Design a model robot manipulators and analyze their performance, through running simulations using a MATLAB-based Robot Toolbox</li> <li>UNIT - I</li> <li>Lecture Hrs:</li> <li>Introduction &amp; Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.</li> <li>UNIT - II</li> <li>Lecture Hrs:</li> <li>Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.</li> <li>UNIT - III</li> <li>Lecture Hrs:</li> <li>Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.</li> <li>UNIT - IV</li> <li>Lecture Hrs:</li> <li>Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors ; Reed Switches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.</li> <li>UNIT - V</li> <li>Lecture Hrs:</li> <li>Robots and Applications.: Industrial Applications – Processing applications – Assembly</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Discuss va</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rious applications of industrial robot systems                      |        |         |          |     |
| simulations using a MATLAB-based Robot Toolbox         UNIT - I         Lecture Hrs:         Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.         UNIT - II         Lecture Hrs:         Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.         UNIT - III         Lecture Hrs:         Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.         UNIT - IV         Lecture Hrs:         Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors ; Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V         Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Analyze ro</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bot manipulators in terms of their kinematics, kinetics, and contra | rol    |         |          |     |
| UNIT - ILecture Hrs:Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human<br>arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.UNIT - IILecture Hrs:Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of<br>links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse<br>kinematics.UNIT - IIILecture Hrs:Differential Motion – Statics – Dynamic Modeling:<br>Velocity Propagation along links, manipulator<br>Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of<br>trajectory planning.UNIT - IVLecture Hrs:Robot Systems :<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robot: vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • Design a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | model robot manipulators and analyze their performance,             | thro   | ugh     | runn     | ing |
| Introduction & Basic Definitions: History pf robots-robot anatomy, Coordinate Systems , Human arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.         UNIT - II       Lecture Hrs:         Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.         UNIT - III       Lecture Hrs:         Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.         UNIT - IV       Lecture Hrs:         Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V       Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s using a MATLAB-based Robot Toolbox                                |        |         |          |     |
| arm Characteristics , Cartesian , Cylindrical, Polar, coordinate frames , mapping transform.       UNIT - II         UNIT - II       Lecture Hrs:         Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.         UNIT - III       Lecture Hrs:         Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.         UNIT - IV       Lecture Hrs:         Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V       Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | Lect   | ture H  | Irs:     |     |
| UNIT - II       Lecture Hrs:         Kinematics – Inverse Kinematics:Kinematics , Mechanical structure and notations , description of links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.         UNIT - III       Lecture Hrs:         Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.         UNIT - IV       Lecture Hrs:         Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors ; Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V       Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         | umai     | n   |
| Kinematics - Inverse Kinematics: Kinematics , Mechanical structure and notations , description of<br>links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse<br>kinematics.UNIT - IIILecture Hrs:Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator<br>Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of<br>trajectory planning.UNIT - IVLecture Hrs:Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps,<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors ;<br>Reed Switches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s, Cartesian, Cylindrical, Polar, coordinate frames, mapping tra    | nsfor  | m.      |          |     |
| links and joints , DenavitHatenberg notation , manipulator transformation matrix , examples inverse kinematics.         UNIT - III       Lecture Hrs:         Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.         UNIT - IV       Lecture Hrs:         Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors, Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V       Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| kinematics.Lecture Hrs:UNIT - IIILecture Hrs:Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator<br>Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of<br>trajectory planning.UNIT - IVLecture Hrs:Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps,<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| UNIT - IIILecture Hrs:Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator<br>Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of<br>trajectory planning.UNIT - IVLecture Hrs:Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps,<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enavitHatenberg notation, manipulator transformation matrix, e      | examp  | oles in | nvers    | e   |
| Differential Motion – Statics – Dynamic Modeling: Velocity Propagation along links, manipulator<br>Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of<br>trajectory planning.UNIT - IVLecture Hrs:Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps,<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | Ŧ      |         |          |     |
| Jacobian – Jacobian singularities – Lagrange Euler formulation Newton Euler formulation basics of trajectory planning.       Lecture Hrs:         UNIT - IV       Lecture Hrs:         Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors, Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors : Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V       Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| trajectory planning.Lecture Hrs:UNIT - IVLecture Hrs:Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps,<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| UNIT - IVLecture Hrs:Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps,<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | ulatic | on bas  | sics o   | ot  |
| Robot Systems : Actuators Sensors and Vision: Hydraulic and Electrical Systems Including Pumps,<br>valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.UNIT - VLecture Hrs:Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | τ      | T       | <b>T</b> |     |
| valves, solenoids, cylinders, stepper motors, Encoders and AC Motors Range and use of sensors,<br>Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :<br>Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.<br>UNIT - V Lecture Hrs:<br>Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors :         Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V       Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          | ·s, |
| Reed Switches, Ultrasonic, Barcode Readers and RFID – Fundamentals of Robotic vision.         UNIT - V       Lecture Hrs:         Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| UNIT - V         Lecture Hrs:           Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          | s . |
| Robots and Applications.: Industrial Applications – Processing applications – Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rasone, Darcode Readers and RTID – I undamentals of Robotie         |        |         | Irci     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cations • Industrial Applications - Processing applications - Ass   |        |         | 115.     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | CIIIOI | y       |          |     |
| Textbooks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eron upproutons, ron maustral approutons.                           |        |         |          |     |
| 1. Robotics and Control : R.K. Mittal and I.J. Nagarath, TMH 2003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd Control · R K Mittal and LI Nagarath TMH 2003                    |        |         |          |     |
| <ol> <li>Introduction to Robotics – P.J. Mckerrow, ISBN: 0201182408</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                   |        |         |          |     |
| <ol> <li>Introduction to Robotics – S. Nikv, 2001, Prentice Hall,</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |        |         |          |     |
| 4. Mechatronics and Robotics: Design & Applications – A. Mutanbara, 1999, CRC Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | CRC    | Pres    | s.       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Reference Books:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |        |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K.S. Fu, R.C. Gonzalez and C.S.G. Lee, 2008, TMH.                   |        |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Robotics –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K.S. Fu, R.C. Gonzalez and C.S.G. Lee, 2008, TMH.                   |        |         |          |     |



> M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

# AUDIT COURSE-I



## M.TECH. IN EMBEDDED SYSTEMS

| Course Code                         | ENGLISH FOR RESEARCH PAPER WRITING                                                                                                        | L     | Т      | Р     | С   |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|-----|
| 21DAC101a                           |                                                                                                                                           | 2     | 0      | 0     | 0   |
|                                     | Semester                                                                                                                                  |       |        | I     |     |
|                                     |                                                                                                                                           |       |        |       |     |
| Course Objectiv                     | res: This course will enable students:                                                                                                    |       |        |       |     |
| Understa                            | nd the essentials of writing skills and their level of readability                                                                        |       |        |       |     |
| • Learn ab                          | out what to write in each section                                                                                                         |       |        |       |     |
| • Ensure q                          | ualitative presentation with linguistic accuracy                                                                                          |       |        |       |     |
| <b>Course Outcom</b>                | es (CO): Student will be able to                                                                                                          |       |        |       |     |
| Understa                            | nd the significance of writing skills and the level of readability                                                                        |       |        |       |     |
|                                     | and write title, abstract, different sections in research paper                                                                           |       |        |       |     |
| -                                   | the skills needed while writing a research paper                                                                                          |       |        |       |     |
| UNIT - I                            |                                                                                                                                           | ectur | e Hrs  | :10   |     |
|                                     | Research Paper- Planning and Preparation- Word Order- Useful F<br>es-Structuring Paragraphs and Sentences-Being Concise and Remo<br>guity |       |        |       |     |
| UNIT - II                           |                                                                                                                                           | ectur | e Hrs  | :10   |     |
|                                     | nents of a Research Paper- Abstracts- Building Hypothesis-Regs- Hedging and Criticizing, Paraphrasing and Plagiarism, Cautering           |       |        | oble  | n - |
| UNIT - III                          | L                                                                                                                                         | ectur | e Hrs  | :10   |     |
| Introducing Revi<br>Conclusions-Rec | ew of the Literature – Methodology - Analysis of the Data-Find<br>ommendations.                                                           | ngs   | - Dis  | cussi | on- |
| UNIT - IV                           |                                                                                                                                           | Lee   | cture  | Hrs:  | )   |
| Key skills needed                   | for writing a Title, Abstract, and Introduction                                                                                           |       |        |       |     |
| UNIT - V                            |                                                                                                                                           | Lee   | cture  | Hrs:  | )   |
| Appropriate lang<br>Conclusions     | uage to formulate Methodology, incorporate Results, put forth Arg                                                                         | gume  | nts a  | nd di | aw  |
| Suggested Read                      | ing                                                                                                                                       |       |        |       |     |
| 1. Goldbort                         | R (2006) Writing for Science, Yale University Press (available or                                                                         | Goo   | gle I  | Books | 5)  |
|                                     | urriculum of Engineering & Technology PG Courses [Volume-I]                                                                               |       |        |       |     |
|                                     | 2006) How to Write and Publish a Scientific Paper, Cambridge Uni                                                                          |       |        | ess   |     |
|                                     | N (1998), Handbook of Writing for the Mathematical Sciences, S                                                                            | IAM   | •      |       |     |
| Highmar                             |                                                                                                                                           |       |        |       |     |
|                                     | Vallwork , English for Writing Research Papers, Springer New Yor<br>rg London, 2011                                                       | 'k Do | ordree | cht   |     |



| Course Code      |                 |                                                                                        |          | L       | Т         | Р        | С       |
|------------------|-----------------|----------------------------------------------------------------------------------------|----------|---------|-----------|----------|---------|
| 21DAC101b        |                 | DISASTER MANAGEMENT                                                                    |          | 2       | 0         | 0        | 0       |
|                  |                 | Seme                                                                                   | ster     |         |           | [        |         |
|                  |                 |                                                                                        |          |         |           |          |         |
| Course Objectiv  | ves: This cour  | se will enable students:                                                               |          |         |           |          |         |
| • Learn to       | demonstrate     | e critical understanding of key concep                                                 | ots in   | disas   | ter risk  | reduct   | ion     |
| and hum          | nanitarian resp | onse.                                                                                  |          |         |           |          |         |
|                  |                 | sterriskreduction and humanitarian response                                            | se poli  | cy and  | l practic | e from   |         |
| •                | e perspectives. |                                                                                        |          |         |           |          |         |
|                  |                 | ngofstandardsofhumanitarianresponseandp                                                | practica | alrelev | vanceins  | specific | types   |
|                  | ers and conflic |                                                                                        | manta    |         | ahaa ni   |          | nd      |
|                  |                 | estrengthsandweaknessesofdisastermanage<br>ent countries, particularly their home coun |          |         |           |          |         |
| UNIT - I         | ming in uniter  | ent countries, particularly tien nome coun                                             |          |         | untiles   | incy we  | лкш     |
| Introduction:    |                 |                                                                                        |          |         |           |          |         |
| Disaster:Definit | tion,Factorsan  | dSignificance;DifferenceBetweenHazardan                                                | ndDisas  | ster;N  | aturalar  | d        |         |
|                  |                 | ce, Nature, Types and Magnitude.                                                       |          | ,       |           |          |         |
| Disaster Prone   |                 |                                                                                        |          |         |           |          |         |
| Study of Seism   | ic Zones; Area  | as Prone to Floods and Droughts, Landslid                                              | les and  | l Ava   | lanches;  | Areas    | Prone   |
| -                |                 | zards with Special Reference to Tsunar                                                 |          |         |           |          |         |
| Epidemics        |                 |                                                                                        |          |         |           |          |         |
| UNIT - II        |                 |                                                                                        |          |         |           |          |         |
| Repercussions    | of Disasters a  | and Hazards:                                                                           |          |         |           |          |         |
| Economic Dam     | nage, Loss of   | Human and Animal Life, Destruction of                                                  | of Ecos  | systen  | n. Natu   | ral Dis  | asters: |
| Earthquakes,Vo   | olcanisms,Cycl  | ones, Tsunamis, Floods, Droughts and Famine                                            | es,Lano  | dslide  | s and     | Avala    | nches,  |
| Man-made disa    | ster: Nuclear   | Reactor Meltdown, Industrial Accidents, O                                              | il Slicl | ks and  | l Spills, | Outbre   | aks of  |
| Disease and Epi  | idemics, War    | and Conflicts.                                                                         |          |         | -         |          |         |
| UNIT - III       |                 |                                                                                        |          |         |           |          |         |
| Disaster Prepa   | redness and I   | Management:                                                                            |          |         |           |          |         |
| Preparedness:    | Monitoring of   | of Phenomena Triggering ADisasteror                                                    | Hazar    | rd; E   | valuatio  | on of    | Risk:   |
| Application of   | Remote Sens     | sing, Data from Meteorological and Ot                                                  | ther A   | genci   | es, Med   | lia Re   | eports: |
| Governmental a   | and Communit    | y Preparedness.                                                                        |          | -       |           |          | _       |
| UNIT - IV        |                 |                                                                                        |          |         |           |          |         |
| Risk Assessme    | nt Disaster R   | isk:                                                                                   |          |         |           |          |         |
| Concept and      | Elements, Di    | saster Risk Reduction, Global and Na                                                   | tional   | Disa    | ster Ri   | sk Situ  | ation.  |
| TechniquesofRi   | iskAssessment   | ,GlobalCo-OperationinRiskAssessmentand                                                 | l Warn   | ing, F  | eople's   | Partici  | pation  |
| in Risk Assessn  |                 | -                                                                                      |          | 0.      |           |          | •       |
| UNIT - V         |                 |                                                                                        |          |         |           |          |         |
| Disaster Mitig   | ation:          |                                                                                        | 1        |         |           |          |         |
| 0                |                 | esofDisasterMitigation,EmergingTrendsInN                                               | Mitigat  | ion.St  | ructural  |          |         |
| e                |                 | Mitigation, Programs of Disaster Mitigatio                                             | •        |         |           |          |         |
|                  | ling            |                                                                                        |          |         |           |          |         |



# **M.TECH. IN EMBEDDED SYSTEMS**

- 1. R.Nishith, SinghAK, "Disaster Management in India: Perspectives, issues and strategies
- "New Royal book Company..Sahni,PardeepEt.Al.(Eds.),"DisasterMitigationExperiencesAndReflections",PrenticeHa Il OfIndia, New Delhi.
- 3. GoelS.L., DisasterAdministrationAndManagementTextAndCaseStudies", Deep&Deep Publication Pvt. Ltd., New Delhi



| Course Code          | SANSKE          | ITFOR TECHNICAL KNOW                 | LEDGE          | L         | Т       | P       | C     |
|----------------------|-----------------|--------------------------------------|----------------|-----------|---------|---------|-------|
| 21DAC101c            |                 |                                      |                | 2         | 0       | 0       | 0     |
|                      |                 |                                      | Semester       |           |         | I       |       |
| Course Objectiv      | ves: This cours | e will enable students:              |                |           |         |         |       |
| • To get a           | working know    | ledge in illustrious Sanskrit, the   | scientific lan | guage ir  | the wo  | rld     |       |
| 0                    | 0               | improve brain functioning            |                | 8         |         |         |       |
|                      | -               | evelopthelogicinmathematics, scie    | ence&othersu   | ibjects e | nhancin | g the   |       |
| memory               |                 | 1 2 2                                |                | 5         |         | 0       |       |
| •                    | •               | urs equipped with Sanskrit will be   | e able to expl | ore the l | huge    |         |       |
| • Knowle             | dge from ancie  | ntliterature                         | -              |           | -       |         |       |
| <b>Course Outcom</b> | es (CO): Stud   | ent will be able to                  |                |           |         |         |       |
| • Understa           | anding basic Sa | anskrit language                     |                |           |         |         |       |
|                      |                 | ture about science &technology ca    |                | tood      |         |         |       |
|                      | logical languag | ge will help to develop logic in stu | udents         |           |         |         |       |
| UNIT - I             |                 |                                      |                |           |         |         |       |
| Alphabets in Sa      | anskrit,        |                                      |                |           |         |         |       |
| UNIT - II            |                 |                                      |                |           |         |         |       |
| Past/Present/Fut     | ure Tense, Sim  | ple Sentences                        |                |           |         |         |       |
| UNIT - III           |                 |                                      |                |           |         |         |       |
| Order, Introducti    | ion of roots    |                                      |                |           |         |         |       |
| UNIT - IV            |                 |                                      |                |           |         |         |       |
| Technical infor      | mation about S  | anskrit Literature                   |                |           |         |         |       |
| UNIT - V             |                 |                                      |                |           |         |         |       |
| Technical conce      | epts of Engined | ering-Electrical, Mechanical, Arch   | nitecture, Ma  | thematic  | 2S      |         |       |
| Suggested Read       | ling            |                                      |                |           |         |         |       |
|                      |                 | ishwas, Sanskrit-Bharti Publica      |                |           |         |         |       |
|                      |                 | it" Prathama Deeksha- Ver            | mpatiKutun     | nbshastr  | i, Rash | triyaSa | nskri |
| Sansthanam, N        |                 |                                      |                |           |         |         |       |
| 3."India's Glor      | ious Scientifi  | cTradition" Suresh Soni, Ocea        | n books (P)    | Ltd.,N    | ew Del  | hi      |       |



**M.TECH. IN EMBEDDED SYSTEMS** 

**COURSE STRUCTURE & SYLLABI** 

# AUDIT COURSE-II



| 21DAC201a                                                                                                                                                                                                                                                                            | PEDAGOGY STUDIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                             | Т                                                                   | P                               | C                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                             | 0                                                                   | 0                               | 0                                     |
|                                                                                                                                                                                                                                                                                      | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               | Ι                                                                   | Ι                               |                                       |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                     |                                 |                                       |
| Course Objectiv                                                                                                                                                                                                                                                                      | <b>ves:</b> This course will enable students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |                                                                     |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | xistingevidenceonthereviewtopictoinformprogrammedesignar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ndpolic                                                       | y makir                                                             | ng                              |                                       |
|                                                                                                                                                                                                                                                                                      | en by the DfID, other agencies and researchers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                     |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | critical evidence gaps to guide the development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                                                     |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | es (CO): Student will be able to<br>able to understand:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                                                     |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | agogicalpracticesarebeingusedbyteachersinformalandinforma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lclassr                                                       | ooms in                                                             | develo                          | ning                                  |
| countrie                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                     |                                 | P8                                    |
|                                                                                                                                                                                                                                                                                      | he evidence on the effectiveness of these pedagogical practic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es, in v                                                      | vhat                                                                |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | ns, and with what population of learners?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                     |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | eachereducation(curriculumandpracticum)andtheschoolcurric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uluma                                                         | nd guida                                                            | ance                            |                                       |
| UNIT - I                                                                                                                                                                                                                                                                             | best support effective pedagogy?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |                                                                     |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | nd Methodology: Aims and rationale, Policy back ground, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Concor                                                        | tual from                                                           | ma wo                           | le and                                |
| terminology<br>questions. Over                                                                                                                                                                                                                                                       | Theories oflearning, Curriculum, Teachereducation. Con view of methodology and Searching.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ceptual                                                       | framew                                                              | ork,Re                          | search                                |
| UNIT - II                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                     |                                 |                                       |
|                                                                                                                                                                                                                                                                                      | <b>view:</b> Pedagogical practices are being used by teachers eveloping countries. Curriculum, Teacher education.                                                                                                                                                                                                                                                                                                                                                                                                                                              | in fo                                                         | rmal an                                                             | nd inf                          | formal                                |
|                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                     |                                 |                                       |
| UNIT - III                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1                                                            | 1.                                                                  |                                 |                                       |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef                                                                                                                                                                                                               | eeffectivenessofpedagogicalpractices,Methodologyfortheinder<br>dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagog<br>liefs and Pedagogic strategies.                                                                                                                                                                                                                                                                     | andthe gth and                                                | scho cu<br>nature                                                   | rriculu<br>of th b              | n and<br>ody of                       |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef<br>attitudes and be                                                                                                                                                                                           | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagog                                                                                                                                                                                                                                                                                                                                                                       | andthe gth and                                                | scho cu<br>nature                                                   | rriculu<br>of th b              | n and<br>ody of                       |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef<br>attitudes and be<br>UNIT - IV<br>Professional de<br>Support from th<br>teacherandtheco                                                                                                                     | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagog<br>liefs and Pedagogic strategies.                                                                                                                                                                                                                                                                                                                                    | andthe<br>gth and<br>gical ap                                 | scho cu<br>l nature<br>oproache                                     | rricului<br>of th be<br>es. Tea | m and<br>ody of<br>chers              |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef<br>attitudes and be<br>UNIT - IV<br>Professional de<br>Support from th<br>teacherandtheco<br>sizes                                                                                                            | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagog<br>liefs and Pedagogic strategies.                                                                                                                                                                                                                                                                                                                                    | andthe<br>gth and<br>gical ap                                 | scho cu<br>l nature<br>oproache                                     | rricului<br>of th be<br>es. Tea | n and<br>ody of<br>chers <sup>*</sup> |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef<br>attitudes and be<br>UNIT - IV<br>Professional de<br>Support from th<br>teacherandtheco<br>sizes<br>UNIT - V                                                                                                | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagog<br>liefs and Pedagogic strategies.                                                                                                                                                                                                                                                                                                                                    | andthe<br>gth and<br>gical aj<br>o suppo                      | scho cu<br>l nature<br>oproache<br>ort, Peer<br>cesand l            | rricului<br>of th be<br>es. Tea | m and<br>ody of<br>chers              |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef<br>attitudes and be<br>UNIT - IV<br>Professional de<br>Support from th<br>teacherandtheco<br>sizes<br>UNIT - V<br>Researchgapsa                                                                               | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagog<br>liefs and Pedagogic strategies.                                                                                                                                                                                                                                                                                                                                    | andthe<br>gth and<br>gical aj<br>o suppo                      | scho cu<br>l nature<br>oproache<br>ort, Peer<br>cesand l            | rricului<br>of th be<br>es. Tea | m and<br>ody of<br>chers              |
| Evidence on th<br>of included stu<br>guidance mater.<br>evidence for ef<br>attitudes and be<br>UNIT - IV<br>Professional de<br>Support from th<br>teacherandtheco<br>sizes<br>UNIT - V<br>Researchgapsa<br>Curriculum and                                                            | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagog<br>liefs and Pedagogic strategies.<br>welopment: alignment with classroom practices and follow-up<br>e head<br>mmunity.Curriculumandassessment,Barrierstolearning:limited<br>mdfuturedirections:Researchdesign,Contexts,Pedagogy,Teac<br>assessment, Dissemination and research impact.                                                                               | andthe<br>gth and<br>gical aj<br>o suppo                      | scho cu<br>l nature<br>oproache<br>ort, Peer<br>cesand l            | rricului<br>of th be<br>es. Tea | m and<br>ody of<br>chers              |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef<br>attitudes and be<br>UNIT - IV<br>Professional de<br>Support from th<br>teacherandthece<br>sizes<br>UNIT - V<br>Researchgapsa<br>Curriculum and<br>Suggested Read<br>1. AckersJ,<br>31 (2): 2               | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagogi<br>liefs and Pedagogic strategies.<br>velopment: alignment with classroom practices and follow-up<br>e head<br>mmunity.Curriculumandassessment,Barrierstolearning:limited<br>mdfuturedirections:Researchdesign,Contexts,Pedagogy,Teac<br>assessment, Dissemination and research impact.<br>ing<br>HardmanF(2001)ClassroominteractioninKenyanprimaryschood<br>45-261. | andthe<br>gth and<br>gical ap<br>o suppo<br>dresour<br>heredu | scho cu<br>I nature<br>oproache<br>ort, Peer<br>cesand I<br>cation, | rricului<br>of th be<br>es. Tea | m and<br>ody of<br>chers              |
| Evidence on th<br>of included stu<br>guidance mater<br>evidence for ef<br>attitudes and be<br>UNIT - IV<br>Professional de<br>Support from th<br>teacherandthece<br>sizes<br>UNIT - V<br>Researchgapsa<br>Curriculum and<br>Suggested Read<br>1. AckersJ,<br>31 (2): 2<br>2. Agrawal | dies. How can teacher education (curriculumandpracticum)<br>als best support effective pedagogy? Theory of change. Streng<br>fective pedagogical practices. Pedagogic theory and pedagogi<br>liefs and Pedagogic strategies.<br>velopment: alignment with classroom practices and follow-up<br>e head<br>mmunity.Curriculumandassessment,Barrierstolearning:limited<br>ndfuturedirections:Researchdesign,Contexts,Pedagogy,Teac<br>assessment, Dissemination and research impact.<br>ing<br>HardmanF(2001)ClassroominteractioninKenyanprimaryschool            | andthe<br>gth and<br>gical ap<br>o suppo<br>dresour<br>heredu | scho cu<br>I nature<br>oproache<br>ort, Peer<br>cesand I<br>cation, | rricului<br>of th be<br>es. Tea | m and<br>ody of<br>chers              |



# **M.TECH. IN EMBEDDED SYSTEMS**

# **COURSE STRUCTURE & SYLLABI**

- 4. AkyeampongK(2003) Teacher training in Ghana does it count? Multi-site teachereducation research project (MUSTER) country report 1. London: DFID.
- 5. Akyeampong K, LussierK, PryorJ, Westbrook J (2013)Improving teaching and learning of basic maths and reading in Africa: Does teacherpreparation count?International Journal Educational Development, 33 (3): 272–282.
- 6. Alexander RJ(2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

Chavan M (2003)ReadIndia: A mass scale, rapid, 'learning to read'campaign.

7. www.pratham.org/images/resource%20working%20paper%202.pdf.



| Course Code          | C (T)            |                                                       |       | L     | Т     | P | С |
|----------------------|------------------|-------------------------------------------------------|-------|-------|-------|---|---|
| 21DAC201b            | STI              | RESSMANAGEMENT BY YOGA                                | Γ     | 2     | 0     | 0 | 0 |
|                      |                  | Semest                                                | er    |       | I     | Ι |   |
|                      |                  |                                                       |       |       |       |   |   |
| Course Objectiv      | ves: This cour   | se will enable students:                              |       |       |       |   |   |
| To achie             | ve overall hea   | lth of body and mind                                  |       |       |       |   |   |
| To overce            | come stres       |                                                       |       |       |       |   |   |
| <b>Course Outcom</b> | es (CO): Stud    | ent will be able to                                   |       |       |       |   |   |
| Develop              | healthy mind     | in a healthy body thus improving social hea           | lth a | also  |       |   |   |
| • Improve            | efficiency       |                                                       |       |       |       |   |   |
| UNIT - I             |                  |                                                       |       |       |       |   |   |
| Definitions of E     | Eight parts of y | og.(Ashtanga)                                         |       |       |       |   |   |
| UNIT - II            |                  |                                                       |       |       |       |   |   |
| Yam and Niyan        | n.               |                                                       |       |       |       |   |   |
| UNIT - III           |                  |                                                       |       |       |       |   |   |
| Do`sand Don't'       | sin life.        |                                                       |       |       |       |   |   |
| i) Ahinsa, satya,    | astheya,bramh    | acharyaand aparigrahaii)                              |       |       |       |   |   |
|                      | n,tapa,swadhya   | ay,ishwarpranidhan                                    |       |       |       |   |   |
| UNIT - IV            |                  |                                                       |       |       |       |   |   |
| Asan and Prana       | yam              |                                                       |       |       |       |   |   |
| UNIT - V             |                  |                                                       |       |       |       |   |   |
|                      |                  | nefitsformind &body                                   |       |       |       |   |   |
|                      |                  | chniques and its effects-Types of pranayam            |       |       |       |   |   |
| Suggested Read       |                  |                                                       | r 1   | 1 1 1 |       |   |   |
|                      |                  | ning-Part-I": Janardan SwamiYogabhyasiM               |       |       |       |   |   |
| Ashrama (Public      |                  | ne Internal Nature" by Swami Vivekan<br>pent) Kolkata | anda  | 1, AU | valla |   |   |
|                      |                  | init), ixoixata                                       |       |       |       |   |   |



## M.TECH. IN EMBEDDED SYSTEMS

| Course Code    | PERSONALITY DEVELOPMENT THROUG                                                            | GHLIFE        | L        | T          | P      | C |
|----------------|-------------------------------------------------------------------------------------------|---------------|----------|------------|--------|---|
| 21DAC201c      | ENLIGHTENMENTSKILLS                                                                       | <u> </u>      | 2        | 0          | 0      | 0 |
|                |                                                                                           | Semester      |          |            | I      |   |
| Course Objecti | ves: This course will enable students:                                                    |               |          |            |        |   |
| Ū.             |                                                                                           |               |          |            |        |   |
|                | to achieve the highest goal happily<br>me a person with stable mind, pleasing personality | , and detern  | ainatio  | •          |        |   |
|                | ten wisdom in students                                                                    |               | matio    | 1          |        |   |
|                | es (CO): Student will be able to                                                          |               |          |            |        |   |
|                | Shrimad-Bhagwad-Geetawillhelpthestudentindeve                                             | lopinghispe   | ersonali | tvand a    | chieve |   |
| •              | est goal in life                                                                          |               |          | - <b>J</b> |        |   |
| • The pers     | son who has studied Geetawilllead the nation and r                                        | mankind to    | peace a  | nd pros    | perity |   |
|                | Neetishatakam will help in developing versatile p                                         | ersonality of | of stude | ents       |        |   |
| UNIT - I       |                                                                                           |               |          |            |        |   |
| Neetisatakam-  | Holistic development of personality                                                       |               |          |            |        |   |
|                | 20,21,22(wisdom)                                                                          |               |          |            |        |   |
| Verses-29,     | 31,32(pride &heroism)                                                                     |               |          |            |        |   |
|                | 28,63,65(virtue)                                                                          |               |          |            |        |   |
| UNIT - II      |                                                                                           |               |          |            |        |   |
| Neetisatakam-  | Holistic development of personality                                                       |               |          |            |        |   |
|                | 53,59(dont's)                                                                             |               |          |            |        |   |
|                | 73,75,78(do's)                                                                            |               |          |            |        |   |
| UNIT - III     |                                                                                           |               |          |            |        |   |
| **             | y to day work and duties.                                                                 |               |          |            |        |   |
|                | agwadGeeta:Chapter2-Verses41,47,48,                                                       |               |          |            |        |   |
| *              | Verses13,21,27,35,Chapter6-Verses5,13,17,23,35,                                           |               |          |            |        |   |
| <b>A</b>       | Verses45,46,48.                                                                           |               |          |            |        |   |
| UNIT - IV      |                                                                                           |               |          |            |        |   |
|                | asic knowledge.                                                                           |               |          |            |        |   |
|                | agwadGeeta:Chapter2-Verses 56,62,68                                                       |               |          |            |        |   |
| *              | -Verses13,14,15,16,17,18                                                                  |               |          |            |        |   |
| •              | of Rolemodel. Shrimad Bhagwad Geeta:                                                      |               |          |            |        |   |
| UNIT - V       |                                                                                           |               |          |            |        |   |
| -              | Verses 17, Chapter 3-Verses 36, 37, 42,                                                   |               |          |            |        |   |
| •              | Verses18,38,39                                                                            |               |          |            |        |   |
|                | - Verses 37, 38, 63                                                                       |               |          |            |        |   |
| Suggested Read | ung<br>vadGita"bySwamiSwarupanandaAdvaitaAshram()                                         | Publication   | Denarti  | ment)      |        |   |
| Kolkata        |                                                                                           | i uoncation   | Departi  | nent),     |        |   |
|                | hree Satakam (Niti-sringar-vairagya) by P.Gopin                                           | ath, Rasht    | riyaSan  | skrit      |        |   |
| Sansthanam,    |                                                                                           | . ,           | J        | -          |        |   |



> M.TECH. IN EMBEDDED SYSTEMS COURSE STRUCTURE & SYLLABI

# OPEN ELECTIVE



## M.TECH. IN EMBEDDED SYSTEMS

| Course Code                           | INDUSTRIAL SAFETY                                                                                                                    | L     | Т      | Р      | С        |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|----------|
| 21DOE301b                             | INDUSTRIAL SAFETT                                                                                                                    | 3     | 0      | 0      | 3        |
| 210015010                             | Semester                                                                                                                             | 5     | U      | III    | 5        |
|                                       | Schrstel                                                                                                                             |       |        | 111    |          |
| Course Objective                      | a <b>s</b> •                                                                                                                         |       |        |        |          |
| · · · · · · · · · · · · · · · · · · · | about Industrial safety programs and toxicology, Industrial laws, re                                                                 | Julat | ions   | and so | ource    |
| models                                |                                                                                                                                      | Sarar | 10115  | und b  | surve    |
|                                       | stand about fire and explosion, preventive methods, relief and its sizi                                                              | ng n  | netho  | ds     |          |
|                                       | e industrial hazards and its risk assessment.                                                                                        | 0     |        |        |          |
|                                       | s (CO): Student will be able to                                                                                                      |       |        |        |          |
| To list ou                            | t important legislations related to health, Safety and Environment.                                                                  |       |        |        |          |
| To list ou                            | t requirements mentioned in factories act for the prevention of accide                                                               | ents. |        |        |          |
|                                       | stand the health and welfare provisions given in factories act.                                                                      |       |        |        |          |
| UNIT - I                              |                                                                                                                                      | Leo   | cture  | Hrs:   |          |
|                                       | Accident, causes, types, results and control, mechanical and electron                                                                |       |        |        |          |
|                                       | ntive steps/procedure, describe salient points of factories act 1948                                                                 |       |        |        |          |
|                                       | king water layouts, light, cleanliness, fire, guarding, pressure ves                                                                 | sels, | etc,   | Safet  | y color  |
|                                       | ntion and firefighting, equipment and methods.                                                                                       | Ŧ     |        |        |          |
| UNIT - II                             |                                                                                                                                      |       | cture  |        |          |
|                                       | maintenance engineering: Definition and aim of maintenance eng                                                                       |       |        |        |          |
|                                       | ons and responsibility of maintenance department, Types of ma                                                                        |       |        |        |          |
| Service life of equ                   | ools used for maintenance, Maintenance cost & its relation with r                                                                    | epia  | ceme   | in ec  | onomy,   |
| UNIT - III                            |                                                                                                                                      | La    | cture  | Urai   |          |
|                                       | on and their prevention: Wear- types, causes, effects, wear reductio                                                                 |       |        |        | ricante_ |
| types and applicat                    | ions, Lubrication methods, general sketch, working and applications,                                                                 | i S   | crew   | dowr   | n orease |
|                                       | rease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick fe                                                              |       |        |        |          |
|                                       | vii. Ring lubrication, Definition, principle and factors affecting th                                                                |       |        |        |          |
|                                       | on prevention methods.                                                                                                               |       |        |        | 71       |
| UNIT - IV                             |                                                                                                                                      | Lee   | cture  | Hrs:   |          |
| Fault tracing: Fau                    | It tracing-concept and importance, decision treeconcept, need and                                                                    | appli | icatio | ns, se | equence  |
|                                       | activities, show as decision tree, draw decision tree for problem                                                                    |       |        |        |          |
|                                       | atic, automotive, thermal and electrical equipment's like, I. Any                                                                    |       |        |        |          |
|                                       | pressor, iv. Internal combustion engine, v. Boiler, vi. Electrical mot                                                               | ors,  | Туре   | s of f | aults in |
|                                       | their general causes.                                                                                                                | -     |        |        |          |
| UNIT - V                              |                                                                                                                                      |       | cture  |        |          |
|                                       | ventive maintenance: Periodic inspection-concept and need, deg                                                                       |       |        |        |          |
|                                       | s, overhauling of mechanical components, overhauling of elect                                                                        |       |        |        |          |
|                                       | edies of electric motor, repair complexities and its use, definite eventive maintenance. Steps/procedure for periodic and preventive |       |        |        |          |
|                                       | Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Pro                                                                    |       |        |        |          |
|                                       | enance of mechanical and electrical equipment, advantages of pre-                                                                    |       |        |        |          |
|                                       | ept and importance                                                                                                                   | even  |        | manne  | enunce.  |
| Textbooks:                            | ·····                                                                                                                                |       |        |        |          |
|                                       | ngineering Handbook, Higgins & Morrow, Da Information Services.                                                                      |       |        |        |          |
|                                       | ngineering, H. P. Garg, S. Chand and Company.                                                                                        |       |        |        |          |
| Reference Books                       |                                                                                                                                      |       |        |        |          |
|                                       | •<br>c Compressors, Audels, Mcgrew Hill Publication.                                                                                 |       |        |        |          |
|                                       | gineering Handbook, Winterkorn, Hans, Chapman & Hall London.                                                                         |       |        |        |          |
| 2. I Gundation Ling                   | Sincering Hundebook, Winterkorn, Huns, Chapman & Hun London.                                                                         |       |        |        |          |





## M.TECH. IN EMBEDDED SYSTEMS

| BUSINESS ANALYTICS                                                     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Semester                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | rstar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lytics methods.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>CO</b> ): Student will be able to                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| l demonstrate knowledge of data analytics.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| p analytics.                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| l demonstrate the ability to use technical skills in predicative and   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| l demonstrate the ability to translate data into clear, actionable ins | sight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Overview of Business Analysis, Overview of Requirements, R             | lole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | siness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| oject team, management, and the front line, Handling Stakeholder       | Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | flicts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| s Development Life Cycles, Project Life Cycles, Product Life (         | Cycl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es, R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lequir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Analysis, Gap Analysis, Notations (UML & BPMN), Flow                   | vcha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rts, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Swim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                        | Diag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Process Modeling                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tance,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nents. Managing Requirements Assets: Change Control, Requirements      | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s Too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Embedded and colleborative business intelligence Visual                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                        | mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , er y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| by James Cadle et al.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UV James Caule et al.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ent: The Managerial Process by Erik Larson and, Clifford Gray          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ent: The Managerial Process by Erik Larson and, Clifford Gray          | eria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ara G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | erja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ara G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                        | Semester           jective of this course is to give the student a comprehensive undelytics methods.           CO): Student will be able to           idemonstrate knowledge of data analytics.           idemonstrate the ability of think critically in making decisions bar panalytics.           idemonstrate the ability to use technical skills in predicative and modeling to support business decision-making.           idemonstrate the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable instructed the ability to translate data into clear, actionable ability to translate data into clear, ac | Semester           jective of this course is to give the student a comprehensive understar lytics methods.           CO): Student will be able to           demonstrate knowledge of data analytics.           demonstrate the ability of think critically in making decisions based p analytics.           demonstrate the ability to use technical skills in predicative and modeling to support business decision-making.           demonstrate the ability to translate data into clear, actionable insight demonstrate the ability to translate data into clear, actionable insight learner | Semester         jective of this course is to give the student a comprehensive understanding lytics methods.         CO): Student will be able to         Idemonstrate knowledge of data analytics.         Idemonstrate the ability of think critically in making decisions based on p analytics.         Idemonstrate the ability to use technical skills in predicative and modeling to support business decision-making.         Idemonstrate the ability to translate data into clear, actionable insights.         Interview of Business Analysis, Overview of Requirements, Role of the discovery of Business Analysis, Overview of Requirements, Role of the discovery of Requirements, Attributes of Good Requirements, Rement Sources, Gathering Requirements from Stakeholders, Common Reming Requirements: Stakeholder Needs Analysis, Decomposition Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Stateationship Diagrams, State-Transition Diagrams, Data Flow Diagrams Process Modeling         Lecture       Lecture         ents: Presenting Requirements, Socializing Requirements and Gaining Analysis, Requirements Assets: Change Control, Requirements To the discovery is the discovery of the discovery is the dis | 3       0       0         III         gettive of this course is to give the student a comprehensive understanding of lytics methods.         CO): Student will be able to         1       demonstrate knowledge of data analytics.         1       demonstrate the ability of think critically in making decisions based on p analytics.         1       demonstrate the ability to use technical skills in predicative and modeling to support business decision-making.         1       demonstrate the ability to translate data into clear, actionable insights.         1       Lecture Hrs:         Overview of Business Analysis, Overview of Requirements, Role of the Bu         oject team, management, and the front line, Handling Stakeholder Conflicts.         Lecture Hrs:         s Development Life Cycles, Project Life Cycles, Product Life Cycles, Requirements of Good Requirements, Typ         rement Sources, Gathering Requirements from Stakeholders, Common Require         ming Requirements: Stakeholder Needs Analysis, Decomposition Ana         Analysis, Gap Analysis, Notations (UML & BPMN), Flowcharts, Swim         telationship Diagrams, State-Transition Diagrams, Data Flow Diagrams, Use         Process Modeling       Lecture Hrs:         ents: Presenting Requirements, Socializing Requirements and Gaining Accep         nents: Managing Requirements Assets: Change Control, Requirements Tools |



| Course Code                                                                                                                                                                                | WASTE TO ENERGY                                                                                                                                                                                                                                                                                    | L     | Т    | P           | С    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------------|------|
| 21DOE301e                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    | 3     | 0    | 0           | 3    |
|                                                                                                                                                                                            | Semester                                                                                                                                                                                                                                                                                           | III   |      |             |      |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| Course Objectives:                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| Introduce                                                                                                                                                                                  | and explain energy from waste, classification and devices to                                                                                                                                                                                                                                       | con   | vert | wast        | e to |
| energy.                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| • To impart knowledge on biomass pyrolysis, gasification, combustion and conversion process.                                                                                               |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| • To educate on biogas properties ,bio energy system, biomass resources and their classification                                                                                           |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| and biomass energy programme in India.                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| Course Outcomes (CO): Student will be able to                                                                                                                                              |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| • To know about overview of Energy to waste and classification of waste.                                                                                                                   |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| • To acquire knowledge on bio mass pyrolysis, gasification, combustion and conversion process                                                                                              |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| in detail.                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| • To gain knowledge on properties of biogas, biomass resources and programmes to convert                                                                                                   |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| waste to energy in India.                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| UNIT - I                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |       |      | Hrs:1       | -    |
| Introduction to Energy from Waste: Classification of waste as fuel - Agro based, Forest residue,                                                                                           |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors                                                                                                           |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| UNIT - II                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |       |      | Hrs:1       |      |
| Biomass Pyrolysis: Pyrolysis - Types, slow fast - Manufacture of charcoal - Methods - Yields                                                                                               |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| and application – Manufacture of pyrolytic oils and gases, yields and applications.                                                                                                        |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| UNIT - III                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                    | Lec   | ture | Hrs:1       | 12   |
| Biomass Gasification: Gasifiers - Fixed bed system - Downdraft and updraft gasifiers - Fluidized                                                                                           |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating                                                                                       |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| - Gasifier engine arrangement and electrical power - Equilibrium and kinetic consideration                                                                                                 |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| in gasifier operati                                                                                                                                                                        | on                                                                                                                                                                                                                                                                                                 |       |      |             |      |
| UNIT - IV                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |       |      | Hrs:1       |      |
| Biomass Combustion: Biomass stoves - Improved chullahs, types, some exotic designs, Fixed bed                                                                                              |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and                                                                                           |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
|                                                                                                                                                                                            | tion of all the above biomass combustors.                                                                                                                                                                                                                                                          | т     |      | <b>TT</b> 1 | 10   |
| UNIT - V                                                                                                                                                                                   | $= \int \mathbf{L} \left( (\mathbf{r}_{1} + \mathbf{r}_{1})^{2} \mathbf{r}_{1} + \mathbf{r}_{2} \mathbf{r}_{2} + \mathbf{r}_{1} \mathbf{r}_{2} + \mathbf{r}_{2} \mathbf{r}_{2} \right) = \mathbf{D} \left( \mathbf{r}_{1} + \mathbf{r}_{2} \mathbf{r}_{2} + \mathbf{r}_{2} \mathbf{r}_{2} \right)$ |       |      | Hrs:1       |      |
| Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and                                                                                               |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| status - Bio energy system - Design and constructional features - Biomass resources and their classification -                                                                             |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
|                                                                                                                                                                                            | ion processes. Thermo chemical conversion. Direct comb                                                                                                                                                                                                                                             | netic | 'n   | hion        | nace |
| Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification- pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| biogas Plants – Applications - Alcohol production from biomass - Bio diesel production -                                                                                                   |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| Urban waste to energy conversion - Biomass energy programme in India.                                                                                                                      |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| Textbooks:                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 2018                                                                                                                      |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| 2. Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., TMH,                                                                                                    |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| 2017                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| Reference Books:                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| 1. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.                                                                                                   |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| 2. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley                                                                                                      |                                                                                                                                                                                                                                                                                                    |       |      |             |      |
| & Sons, 1                                                                                                                                                                                  | •••                                                                                                                                                                                                                                                                                                | U     |      |             | •    |



## M.TECH. IN EMBEDDED SYSTEMS

# **COURSE STRUCTURE & SYLLABI**

# **Online Learning Resources:**

https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-ch13/ https://www.youtube.com/watch?v=x2KmjbCvKTk